MATH 5210-001 EXAM 1

Instructions. The exam is closed book/notes/calculator. There are 4 problems, each worth the same number of points. DO 3 OF THE 4 PROBLEMS. If you do more than 3, indicate which 3 you want graded. Justify your answers.

1a. State the definition of a norm on a vector space V, and the definition of two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ being equivalent on V.

b. Show directly (without quoting a theorem) that the norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_{1}$ (recall that $\|x\|_{1} = |x_{1}| + \cdots + |x_{n}|$, and $\|x\|_{\infty} = \sup |x_{j}|$) are equivalent on \mathbf{R}^{n} .

c. Show that on C([0,1]), the sup norm $\|\cdot\|_{\infty}$ and the L^1 norm, $\|\cdot\|_1$ are not equivalent.

2. State the definition of a set $K \subset X$ being compact, where X is a metric space. Are the following sets compact? Give a proof of your answer (you may use theorems proven in class).

- **a.** $\overline{B}_1(0) \subset \mathbf{R}^n$.
- **b.** $\overline{B}_1(0) \subset \ell^1$.
- **c.** $\overline{A} \subset C([0, 1/2])$ with the sup norm, where $A = \{x^n : n = 1, 2, \dots\}$.

3a. State the definition of $F : X \to Y$ is uniformly continuous on $A \subset X$, where X and Y are metric spaces.

b. Show that $T: C([a,b]) \to \mathbf{R}$ is uniformly continuous on C([a,b]) (with the sup norm) where T is defined as:

$$T(f) = \int_{a}^{b} f(x) \, dx$$

- **4a.** Define what it means for a metric space X to be complete.
- **b.** Let X be a compact metric space. Show that X is complete.