ROLLE'S MEAN VALUE THEOREM

Theorem (Rolle). Let f be a continuous function on [a, b] which is differentiable on (a, b). Suppose f(a) = f(b). Then there exists a point $c \in (a, b)$ such that f'(c) = 0

Proof. Since f is continuous on the closed interval [a, b], by Weierstrauss' extreme value theorem, f assumes a minimum m and a maximum M on this interval. That is, there are points $c, d \in [a, b]$ such that:

i
$$f(x) \leq M$$
 for all $x \in [a, b]$, and $f(c) = M$.

ii $f(x) \ge m$ for all $x \in [a, b]$, and f(d) = m.

If m = M then f(x) = m for all $x \in [a, b]$ and we've computed that f'(x) = 0 for all $x \in (a, b)$ so in this case we are done.

Now assume that m < M. $f(a) \neq m$ or $f(a) \neq M$ assume without loss of generality that $f(a) \neq M$. Since f(b) = f(a) then $f(b) \neq M$. Therefore $c \neq a$ and $c \neq b$ hence a < c < b and so f is differentiable at c. c is the source of the maximum so it is a local maximum (a maximum which is not at an endpoint). We appeal to Fermat's theorem which says:

If f is defined on $(c-t_0, c+t_0)$ for some t_0 , f differentiable at c, and f has a local maximum or minimum at c then f'(c) = 0

Appealing to this theorem, we have: f'(c) = 0. The case where $f(a) \neq m$ is similar. In this case it follows that f'(d) = 0.