
MATH 3210 - SUMMER 2008 - MIDTERM

You have an hour and a half to complete this test. Show all your work. The

maximum grade is 100.

question grade out of

1 33

2 33

3a 16

3b 8

3c 6

3d 4

total 100

Student Number:
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(1) (33 pts) Using the definition of a convergent sequence prove the following theorem

(Do not appeal to any theorems):

If {an}∞n=1 converges to a and {bn}∞n=1 converges to b then the sequence {an+2bn}∞n=1

converges to a + 2b

Proof.

NTS: ∀ε > 0 there is an N(ε) ∈ N such that for all n > N(ε): |an+2bn−(a+2b)| < ε

Assumptions: ∀ε′ > 0 there is an N ′(ε′) ∈ N such that for all n > N ′(ε′): |an−a| < ε′

∀ε′′ > 0 there is an N ′′(ε′′) ∈ N such that for all n > N ′′(ε′′): |bn − b| < ε′′

Calc:

|an + 2bn − (a + 2b)| = |(a− an) + (2bn − 2b)| ≤1

|an − a|+ |2bn − 2b| ≤2 ε′ + 2ε′′ =3 ε

(a) Inequality 1 follows from the triangle inequality.

(b) Inequality 2 holds for n > N ′(ε′) and n > N ′′(ε′′).

(c) Equality 3 holds if ε′ = ε
2

and ε′′ = ε
4

Proof: Given ε > 0 take ε′ = ε
2

to get N1 = N ′( ε
2
) and ε′′ = ε

4
to get N2 = N ′′( ε

4
).

Define N(ε) = max{N1, N2}
If n > N(ε) then by the calculation above: |an + 2bn − (a + 2b)| < ε ¤
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(2) (33 pts) Consider the following sequence defined inductively:

a1 = 1

an+1 =
√

4an + 1

Prove that {an}∞n=1 converges and find its limit.

Proof. We will prove that {an}∞n=1 is monotonically increasing and bounded above.

We then appeal to the monotone convergence theorem which says that:

Every sequence which is monotonic and bounded converges.

Therefore {an} converges to some finite limit which we denote L.

We first compute L (which will help us choose an upper bound for {an}). Since

{an+1} is a subsequence of {an} it converges to L as well. From the main limit

theorem we get that lim
n→∞

√
4an + 1 =

√
4L + 1. Therefore an+1 =

√
4an + 1 implies

L =
√

4L + 1 ⇒
L2 = 4L + 1 ⇒
L2 − 4L− 1 = 0

The solutions to the above equation are x1,2 = 4±√16+4
2

= 2 ± √5. Since
√

5 > 2,

2 − √5 < 0 and L cannot be negative since we will show that an is monotonically

increasing thus an ≥ a1 = 1. Therefore once we show that {an} converges, its limit

L = 2 +
√

5. Notice that L < 2 + 3 = 5.

Claim. an < 5 for all n ∈ N

Proof of claim. We prove this by induction.

• Basis: We check this for n = 1: a1 = 1 < 5

• Induction Hypothesis: an < 5

• Induction Step: an+1 <? 5

an+1 =
√

4an + 1. By the induction hypothesis an < 5 implies
√

4an + 1 <
√

4 · 5 + 1 =
√

21 <
√

25 = 5. Therefore an+1 < 5
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¤

Claim. For all n ∈ N: an+1 ≥ an

Proof of Claim. We prove this by induction.

• Basis: We check this for n = 1: a2 ≥? a1

a1 = 1, a2 =
√

5 and 5 > 1 implies
√

5 >
√

1 = 1

• Induction Hypothesis: an+1 ≥ an

• Induction Step: an+2 ≥? an+1

an+2 =
√

4an+1 + 1

an+1 =
√

4an + 1

By the induction hypothesis an+1 > an implies 4an+1 +1 > 4an +1 which implies
√

4an+1 + 1 >
√

4an + 1 hence an+2 > an+1

¤

By the monotone convergence theorem {an} converges and its limit is 2 +
√

5

¤
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(3) (34 pts) For each of the following statements, determine if they are true or false. If

they are true, prove them. You are allowed and encouraged to appeal to the theorems

proven in class (without proof) as long as you quote them in full. If the statement is

false find a counter example.

(a) (16 pts) True/False:

If the sequences {an}∞n=1 and {an − bn}∞n=1 converge then {bn}∞n=1 converges.

True

Proof. If {an}∞n=1, {an − bn}∞n=1 converge then by the main limit theorem, so

does: {−(an − bn) + an}∞n=1. But bn = −(an − bn) + an so bn converges. ¤
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(b) (8 pts) True/False:

Suppose {an}∞n=1, {bn}∞n=1 are sequences which satisfy the following properties:

(i) lim
n→∞

an = 0 , lim
n→∞

bn = 0

(ii) bn 6= 0 for all n ∈ N
then lim

n→∞
an

bn

= 1

False.

Counter Example: Take an = 1
n

and bn = − 1
n

then lim
n→∞

an = 0 (we proved this

in class) and lim
n→∞

bn = − lim
n→∞

an = 0 (by the main limit theorem. Moreover

bn 6= 0 for all n so these sequences satisfy all of the assumptions. However,

lim
n→∞

an

bn

= lim
n→∞

1
n

− 1
n

= −1

so the conclusion doesn’t hold.
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(c) (6 pts) True/False:

The sequence an = (1 + 1
2n+n

)2n+n converges.

True.

Proof. We showed in class that the sequence cn = (1+ 1
n
)n converges (by showing

it was monotonically increasing and bounded above by 3). an is a subsequence

of this sequence. Indeed, if nk = 2k + k then cnk
= (1 + 1

2k+k
)2k+k is exactly an.

By the theorem:

If a sequence ck converges to L then every subsequence bnk
converges to L

We get that the sequence an converges. ¤

7



(d) (4 pts) True/False:

Consider the sequence an = cos(n) then:

There are natural numbers m, l > 23, m 6= l such that:

|cos(m)− cos(l)| < 1

1000

True

Proof. an is bounded. Indeed |an| = | cos(n)| ≤ 1

Bolzno-Weierstrauss Theorem: For any bounded sequence an there is a conver-

gent subsequence ank
.

Since ank
converges, it has a finite limit L.

Thus: For all ε > 0 there is a K(ε) such that for all k > K(ε): |ank
− L| < ε

Taking ε = 1
2000

there is a K1 = K( 1
2000

) such that for all k > K1: |ank
−L| < 1

2000

Take k > max{K1, 23} and s = k + 1. We calculate:1

|ank
− ans| = |ank

− L + L− ans| = |(ank
− L)− (ans − L)|

≤ |ank
− L|+ |ans − L| < 1

2000
+ 1

2000
= 1

1000

Thus | cos(nk)− cos(ns)| < 1
1000

.

Lastly, we proved in class that nk ≥ k (because nk is strictly monotonically

increasing).

Therefore nk ≥ k > 23 and ns ≥ s > 23 so we choose m = nk and l = ns and

get:

| cos(m)− cos(l)| < 1

1000

¤

1A similar calculation actually shows that for all k, s > K(ε): |ank
− ans | < 2ε

In other words, from some place K(ε) on, every two elements: ank
, ans are 2ε close.
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