
MATH 3210 - SUMMER 2008 - PRACTICE FINAL

You have two and a half hours to complete this test. Show all your work. There

are a total of 105 points. The maximum grade is 100.

question grade out of

1 20

2a 15

2b 10

2c 10

3 15

4 10

5a 5

5b 5

5c 5

5d 10

total 105

Student Number:
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(1) (20 pts) State and prove the monotone convergence theorem. If you use other theo-

rems in your proof you must state them in full but don’t prove them.

Theorem. If an is a monotonic sequence and there exists a constant K such that

|an| ≤ K for all n ∈ N then an converges to a finite limit.

Proof. Without loss of generality assume that an is monotonically increasing. Let

A = {an|n ∈ N}. A is bounded above by M . We use:

The completeness axiom: If A is bounded above then A has a superimum.

Let s = sup A. We’ll show:

∀ε > 0 there exists N(ε) ∈ N such that for all n > N(ε): |an − s| < ε

Given ε > 0, since s is the superimum, s − ε is not an upper bound for A. So,

there exists an index N such that s− ε < aN . Since an is monotonically increasing,

for n > N : an ≥ aN . Therefore

s− ε < an < s + ε

Thus |an − s| < ε for all n > N . ¤
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(2) (35 pts)

(a) (15 pts) Prove by Cauchy’s definition that lim
x→2

x− 3

x + 1
= −1

3

Solution. NTS: For all ε > 0 there is a δ(ε) > 0 such that if x satisfies 0 <

|x− 2| < δ(ε) then |x−3
x+1

− (−1
3
)| < ε

Calc: |x−3
x+1

− (−1
3
)| = |3(x−3)+(x+1)

3(x+1)
| = | 4x−8

3(x+1)
| = 4

3
|x−2
x+1

| = 4
3
|x−2|
|x+1| .

If δ ≤ 1 then |x− 2| < 1 and 1 < x < 3 therefore 2 < x + 1 < 4 and |x + 1| > 2

so 1
|x+1| < 1

2
. Hence:

∣∣∣∣
x− 3

x + 1
−

(
−1

3

)∣∣∣∣ =
4

3

|x− 2|
|x + 1| <

4

3

|x− 2|
2

<
2

3
δ < δ ≤ ε

The last inequality follows if δ ≤ ε.

Proof: Given ε > 0 let δ(ε) = min{1, ε} and so for x such that 0 < |x−2| < δ(ε)

by the calculation above: |x−3
x+1

− (−1
3
)| < ε ¤

3



(b) (10 pts) State the sequential characterization of lim
x→a

f(x) = L for a, L finite (this

is Heine’s definition).

Definition. lim
x→a

f(x) = L ⇐⇒ For all sequences an such that:

(i) an 6= a for n ∈ N
(ii) lim

n→∞
an = a

it follows that lim
n→∞

f(an) = L.
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(c) (10 pts) Consider D(x) =





1 if x ∈ Q
−1 if x /∈ Q

Prove that for any a ∈ R the limit

lim
x→a

D(x) doesn’t exist.

Proof. Take any a ∈ R.

Claim. • There exists a sequence of rational numbers {qn}∞n=1 such that

qn 6= a for all n and lim
n→∞

qn = a

• There exists a sequence of irrational numbers {rn}∞n=1 such that rn 6= a for

all n and lim
n→∞

rn = a

Proof of claim. By a consequence of the archimedean property, we know that

between a and a + 1
n

there is a rational number which we denote qn and an

irrational number which we denote rn. Thus

a < qn < a + 1
n
∀n ∈ N

a < rn < a + 1
n
∀n ∈ N

Since both sides of both inequalities converge to a, applying the sandwich theo-

rem we get lim
n→∞

qn = a and lim
n→∞

rn = a ¤

By the definition of D(x): D(qn) = 1 and D(rn) = −1 thus lim
n→∞

D(qn) = 1 and

lim
n→∞

D(rn) = −1. By the sequential criterion for convergence, lim
x→a

f(x) doesn’t

exist. ¤
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(3) (15 pts) Compute the limit lim
x→1

∫ x2

1
ecos(t)dt

x− 1
. You must explain every step, and quote

the theorems that you are using.

Proof. Remark: Since
∫ 12

1
ecos(t)dt = 0 this is a limit of the form 0

0
. We will argue

that we can use L’Hopital’s rule to compute it.

• The function F (x) =
∫ x

1
ecos(t)dt is defined in a neighborhood of 1.

Denote f(x) = ecos(x). Let F (x) =
∫ x

1
f(t)dt. This integral makes sense because:

ex is continuous everywhere, and cos(x) is continuous everywhere. Therefore,

their composition f(x) = ecos(x) is continuous everywhere, in particular it is

continuous in the closed interval [0, 2]. A continuous function on a closed interval

is integrable and so F (x) is defined in [0, 2] a closed neighborhood of 1.

• F (x) is differentiable at [0, 2].

By the Fundamental theorem of calculus 2, F (x) is differentiable everywhere

and F ′(x) = f(x) for all x ∈ R.

• Let G(x) = F (x2). G(x) is differentiable on [0, 2].

Since x2 is differentiable everywhere and F (x) is differentiable everywhere, so is

G (a composition of differentiable functions is differentiable) and by the chain

rule

G′(x) = 2x · F ′(x2) = 2x · f(x2) = 2x · ecos(x2)

• By the formula above G′(x) is continuous at 1 and G′(1) = 2ecos(1).

• Applying L’Hopital.

Define h(x) = x− 1, then h′(x) = 1. Since

(a) h(x) = x− 1 6= 0 for x ∈ [0, 2] \ {1} and h′(x) 6= 0 for all x.

(b) lim
x→1

G(x) = G(1) = 0 , and lim
x→1

h(x) = h(1) = 0 (G(x), h(x) are continu-

ous).

(c) lim
x→1

G′(x)

h′(x)
=

lim
x→1

G′(x)

lim
x→1

h′(x)
=

G′(1)

h′(1)
=

2ecos(1)

1
(Here we’re using arithmetics

of limits and the fact that G′(x) and h′(x) are continuous at 1).

then by L’Hopital’s theorem: lim
x→1

G(x)

h(x)
= 2ecos(1)

¤
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(4) (10 pts) Prove: Let f, g : R → R be differentiable functions. Suppose f(a) = g(a)

and for all x > a: f ′(x) ≤ g′(x) then for all x > a: f(x) ≤ g(x).

You must explain every step and quote the theorems that you’re using.

Proof. Let h(x) = g(x) − h(x). Then h(x) is differentiable by arithmetics of dif-

ferentiable functions. In addition h(a) = g(a) − f(a) ≥ 0 and for all x > a:

h′(x) = g′(x)− f ′(x) ≥ 0. By a consequence of the mean value theorem:

If h : [a, b] → R is differentiable on R and for all x ∈ [a, b]: h′(x) ≥ 0 then h(x) is

monotonically increasing on [a, b]

We apply the theorem to h on [a, x] then h(x) ≥ h(a) ≥ 0 thus g(x) − f(x) ≥ 0

for x > a and g(x) ≥ f(x). ¤
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(5) (25 pts) For each of the following statements, determine if it is true or false. If the

statement is false find a counter example. If it is true, prove it. You are allowed and

encouraged to appeal to the theorems proven in class and in your homework as long

as you quote them in full.

(a) (5 pts) True/False:

The equation e−x − ex = π has a real solution.

True.

Solution. Define f(x) = e−x − ex − π. f is continuous since it is a combination

of continuous functions. We know that lim
x→∞

ex = ∞ and lim
x→−∞

ex = 0. Thus, by

arithmetics of infinite limits:

lim
x→∞

f(x) = 0−∞− π = −∞ lim
x→−∞

f(x) = ∞− 0− π = ∞

We have proven in a homework problem that if:

f is continuous, lim
x→−∞

f(x) = ∞ and lim
x→∞

f(x) = −∞ then there exists a point

c such that f(c) = 0.

Applying this to f we get a c such that e−c − ec − π = 0 ¤
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(b) (5 pts) True/False:

Every integrable function on [a, b] is continuous on [a, b]

False.

Counter Example. Consider the function f(x) =





1 0 ≤ x ≤ 1

2 1 < x ≤ 2

This function

is monotonically increasing on [0, 1], we’ve proven:

If f is monotonically increasing on the interval [a, b] then f is integrable on

[a, b]

Therefore, our f(x) it is integrable. However, it is not continuous at x = 1. It

has a jump discontinuity since lim
x→1+

f(x) = 2 and lim
x→1−

f(x) = 1 ¤
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(c) (5 pts) True/False:

Every differentiable function on [a, b] is continuous on [a, b]

True.

Proof. f is differentiable at x for every x ∈ [a, b]. We have proven in class that:

If f is differentiable at x then it is continuous at x.

Therefore, for all x ∈ [a, b], f is continuous at x. ¤
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(d) (10 pts) True/False:

Suppose f(x) is a function which satisfies:

|f(y)− f(x)| ≤ K|y − x|2

for some constant K > 0 and for all x, y ∈ R.

Then f ′(x) = 0 for all x ∈ R.

True.

Proof. 0 ≤
∣∣∣f(y)−f(x)

y−x

∣∣∣ = |f(y)−f(x)|
|y−x| < K|y − x| for all x, y ∈ R. We use the

sandwich theorem which says:

If k, g, h are functions such that for all y in a neighborhood of a, k(y) ≤ g(y) ≤
h(y) and lim

y→a
k(y) = lim

y→a
h(y) = L then lim

y→a
g(y) = L

We apply this for k(y) = 0, g(y) = |f(y)−f(x)|
|y−x| , h(y) = K|y − x| and a = x. Then

we get:

lim
y→x

∣∣∣∣
f(y)− f(x)

y − x

∣∣∣∣ = 0

But

−
∣∣∣∣
f(y)− f(x)

y − x

∣∣∣∣ ≤
f(y)− f(x)

y − x
≤

∣∣∣∣
f(y)− f(x)

y − x

∣∣∣∣
Hence, appealing to the sandwich theorem again,

f ′(x) = lim
y→x

f(y)− f(x)

y − x
= 0

¤
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