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Abstract. We study the Lipschitz metric on Outer Space and prove that
fully irreducible elements of Out(Fn) act by hyperbolic isometries with axes
which are strongly contracting. As a corollary, we prove that the axes of fully
irreducible automorphisms in the Cayley graph of Out(Fn) are stable, mean-
ing that a quasi-geodesic with endpoints on the axis stays within a bounded
distance from the axis.

Introduction

There exists a striking analogy between the mapping class groups of surfaces,
and the outer automorphism group Out(Fn) of a rank n free group. At the core of
this analogy lies Culler and Vogtmann’s Outer Space CVn [14], a contractible finite
dimensional cell complex on which Out(Fn) has a properly discontinuous action.
Like Teichmüller space, Outer Space has an invariant spine on which the action is
cocompact, making it a good topological model for the study of Out(Fn). Indeed,
Outer Space has played a key role in proving theorems for Out(Fn), which were
classically known for the mapping class group. For example, the action of a fully
irreducible outer automorphism on the boundary of CVn has been shown [21] to
have North-South dynamics, and the Tits alternative holds for Out(Fn) [5], [6].

However, while there have been several well studied metrics on Teichmüller space
(the Teichmüller metric, the Weil-Petersson metric, and the Lipschitz metric), the
geometry of Outer Space has remained largely uninvestigated (exceptions include
[18] and [17]). One would like to define a metric on Outer Space so that fully
irreducible elements of Out(Fn), which are analogous to pseudo-Anosov elements
in MCG(S), act by hyperbolic isometries with meaningful translation lengths. But
immediately one encounters a problem: it isn’t clear whether to require the metric
to be symmetric. To clarify, we follow the discussion in [19]. Consider the situation
of a pseudo-Anosov map ψ acting on Teichmüller space T (S) with the Teichmüller
metric dT. Associated to ψ is an expansion factor λψ and two foliations Fs and Fu

so that ψ expands the leaves of Fs by λψ and contracts the leaves of Fu by λ−1
ψ .

Incidentally, λψ = λψ−1 . Furthermore, by Teichmüller ’s theorem, the translation
length of ψ is log(λψ). Going back to Out(Fn), one can associate to a fully irre-
ducible outer automorphism Φ a Perron-Frobenius (PF) eigenvalue λΦ which plays
much the same roll as the expansion factor in the pseudo-Anosov case. However,
it is not always the case that λΦ = λΦ−1 . If we did have an honest metric on
Outer Space where Φ was a hyperbolic isometry then the axis for Φ would also be
an axis for Φ−1. Thus for a point x on the axis of Φ, d(x,Φ(x)) = log(λΦ) and
d(Φ(x), x) = log(λΦ−1). Therefore one would have to abandon either the symmetry
of the metric or the relationship between the translation length of a fully irreducible
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element and its PF eigenvalue. We choose the former in order to preserve the ties
between the action of Φ on CVn and its action on the set of conjugacy classes in Fn.

The (non-symmetric) metric that we carry over from T (S) to Outer Space is
the Lipschitz metric introduced by Thurston [27]. A map h : X → Y between two
metric spaces is Lipschitz if there exists a constant L so that dY (h(x), h(x′)) ≤
LdX(x, x′) for all x, x′ ∈ X . The smallest L for which this holds is called the Lip-
schitz constant of h and denoted Lip(h). Given two marked hyperbolic structures
(X, f), (Y, g) on a surface S define

dL((X, f), (Y, g)) = inf{Lip(h)|h is Lipschitz, and homotopic to g ◦ f−1}

In [10] Choi and Rafi proved that this metric is Lipschitz equivalent to dT in the
thick part of T (S).

While T (S) with dT is not CAT(0) [23] or Gromov hyperbolic [24] it does ex-
hibit some features of negative curvature in the thick part. A geodesic is strongly
contracting if its nearest point projection takes balls disjoint from the geodesic to
sets of bounded diameter, where the bound is independent of the radius of the ball.
Informally, the “shadow” that a ball casts on the geodesic is bounded. For example,
geodesics in a Gromov hyperbolic space are strongly contracting. In [25], Minsky
proved that geodesics contained in the ǫ-thick part of T (S) are uniformly strongly
contracting, with the bound only depending on ǫ and the topology of S. Note that
any axis of a pseudo-Anosov map is contained in the ǫ-thick part of T (S) for a
sufficiently small ǫ. We prove

Theorem. An axis of a fully irreducible outer automorphism is strongly contract-
ing.

A geodesic L in a metric space is stable if every quasi-geodesic segment with
endpoints on L stays within a bounded neighborhood of L which only depends on
the quasi-geodesic constants. As an application of the theorem above we prove:

Corollary. In the Cayley graph of Out(Fn), the axis of a fully irreducible auto-
morphism is stable.

This paper is organized as follows

• In Chapter 1 we go over some definitions and background on Outer Space.
The well informed reader could skip this part.

• In Chapter 2 we define the Lipschitz metric on Outer Space, and deduce a
formula which expresses the relationship between the metric and the lengths
of loops in X and Y (proof due to Tad White and first written in [17]). We
show that the metric is symmetric up to a multiplicative constant in the
ǫ-thick part of Outer Space.

• In Chapter 3 we describe axes of fully irreducible automorphisms. Given
such an axis, we define a coarse projection of CVn onto this axis. It is
noteworthy that the axis for Φ will not necessarily be an axis for Φ−1,
however the distance of the projection of a point to LΦ to its projection to
LΦ−1 does not depend on the point.

• In Chapter 4 we define the Whitehead graph WhX(Λ±) of the attracting
and repelling laminations of Φ at the point X ∈ CVn. We prove that there
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exists a point F ∈ CVn for which WhF (Λ+) ∪WhF (Λ−) is connected and
does not contain a cut vertex.

• In Chapter 5 we use the previous result to show that any loop α which
represents a primitive conjugacy class cannot contain long pieces of both
laminations. Next we prove our main “negative curvature” property. If the
projections of x and y are sufficiently far apart then then d(x, y) is coarsely
larger than d(x, p(x)) + d(p(x), p(y)). We end the chapter by showing that
this is enough to prove that L is a strongly contracting geodesic.

• In Chapter 6 we turn our attention to the Cayley graph of Out(Fn), proving
that the axis of a fully irreducible automorphism is stable.

• In Chapter 7 we have collected some applications: the asymptotic cone of
CVn contains many cut points and is in fact tree graded, the divergence
function in CVn is at least quadratic, and we show that projections onto two
axes A,B of independent irreducible automorphisms satisfy a dichotomy
similar to the one shown in [2] for subsurface projections.

A note on notation: Many of the theorems and propositions in this article contain
several constants which we usually denote s or c within the proposition. When
referring to a constant from a previous proposition, we add its number as a subscript
and state the defining property of this constant. We also remark that some of the
figures contain color and are best viewed as such.

Acknowledgments. It is a pleasure to thank my advisor Mladen Bestvina for
investing many hours of his time and a few of his brilliant ideas in this work. I
would also like to thank Mark Feighn for his support and sound advice. Finally, I’d
like to thank Kenneth Bromberg for motivating some of the applications in chapter
7.

1. Preliminary notions

Outer Space. Let Fn denote the free group on n letters. A rose R0 is bouquet
of n circles, with edges denoted by e1, . . . , en. Identify π1(R0, vertex) with Fn =<
x1, . . . , xn > by declaring xi to be the homotopy class of the loop ei.
A metric graph is a graph with a geodesic metric (specified by assigning positive
lengths to its edges). A marked graph (G, τ) is a graphG equipped with a homotopy
equivalence τ : R0 → G called the marking of (G, τ) . τ induces an isomorphism
τ∗ : Fn → π1(G, τ(vertex)) identifying the fundamental group of G with Fn.
Culler and Vogtmann [14] defined Outer Space CVn, as the space of equivalence
classes of marked metric graphs (G, τ) where:

• each vertex in G has valence at least 3 and
• the equivalence relation is given by: (G, τ) ∼ (H,µ) if there exists a homo-

thety ρ : G → H which preserves the marking up to homotopy, i.e. µ and
ρ ◦ τ are homotopic.

Another useful description of CVn (which naturally extends to the boundary) is
given in terms of Fn-trees. An R-tree is a geodesic metric space in which every two
points x, y are connected by a unique embedded path. A point p ∈ T is a branch
point if T \p has three or more connected components. An R-tree with an isometric
Fn action is called an Fn-tree. An Fn-tree is simplicial if the set of branch points
is discrete, it is minimal if it has no invariant subtree. Outer Space is the space of
equivalence classes of free, simplicial, minimal Fn-trees where two trees T, T ′ are
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equivalent if there exists an equivariant homothety ρ : T → T ′. The functor taking

each graph G to its universal cover G̃ induces an equivalence of the two definitions
of Outer Space.

The axes topology. Consider the set of non-trivial conjugacy classes C in Fn.
Each Fn-tree T induces a length function ℓT : Fn → R by ℓT (x) = the translation
length tr(x) of x as an isometry of T . Since the translation length is a class function,
ℓT descends to a map ℓT : C → R. Therefore we can define a map

ℓ : CVn → RPC

[T ] → [ℓT ]

In [13] Culler and Morgan proved that this map is injective. Thus CVn inherits a

topology from RPC known as the axes topology. We remark (although we will not
need this) that there are other ways to define a topology on CVn: using the cellular
structure of CVn, and using the Gromov topology on the space of metric Fn-trees.
Paulin [26] proved that all three topologies are equivalent.

The boundary of Outer Space. In [13] Culler and Morgan showed that CVn
is compact. It was later shown in [11] and [3] that CVn is the space of very small
minimal Fn-trees up to equivalence by equivariant homothety.

Free factors, basis elements and Whitehead’s theorem. A free factor is a
subgroup A < Fn for which there is a B < Fn such that Fn = A ∗B. An element
x ∈ Fn is called a basis element (or a primitive element) if < x > is a free factor. For
example, no commutator is a basis element of Fn because it represents the trivial
element in the abelianization of Fn. In [28], Whitehead discusses an algorithm for
deciding if a set [y1], . . . , [yk] of conjugacy classes can be completed to a basis, i.e.
do there exist elements w1, . . . , wk such that yw1

1 . . . ywk

k can be completed to a basis
of Fn. We will need a version of his theorem here.

Definition 1.1. Let [y] be the conjugacy class of a cyclically reduced word y in Fn
written in the generators x1, . . . , xn. Then the Whitehead graph of [y] with respect
to the basis B = {x1, . . . , xn} is denoted WhB([y]) and constructed as follows: The
vertex set of this graph is the set B ∪ B−1. zi, zj ∈ B ∪ B−1 are connected by an

edge if z−1
i zj appears in the cyclic word y. Equivalently, let Y is the 2-complex

constructed by gluing a disc D to R0 via the attaching map ∂D
[y]
−→ R0 then

WhB([y]) = Link(ver, Y ). The Whitehead graph of the set of conjugacy classes
[y1], . . . , [yk] is the union of all the individual whitehead graphs, taken with the
same vertex set WhB([y1], . . . , [yk]) = ∪ki=1WhB([yi]).

Whitehead proves

Theorem 1.2 ([28]). If [y1], . . . , [yk] can be completed to a basis, and for some
basis B, WhB([y1], . . . , [yk]) is connected. Then WhB([y1], . . . , [yk]) contains a cut
vertex.

If there’s a cut vertex a in W = WhB([y1], . . . , [yk]) then one could decrease∑k
i=1 |yi|B by changing the basis as follows. Consider W ′ the subgraph of W

induced by the set of vertices different from a. Let W 0 be the vertices in the con-
nected component of the vertex a−1 in W ′, and let W 1 be the rest of the vertices
in W ′. Construct the basis B1 from B:
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• if both xj , x
−1
j ∈ W 1 then replace xj with xixjx

−1
i ,

• if only xj ∈ W 1 then replace xj with xixj
• if both xj , x

−1
j ∈ W 0 then leave them as they are.

It is straightforward to check that B1 is indeed a basis for Fn and that
∑k
i=1 |yi|B >∑k

i=1 |yi|B1
. One could repeat the process to obtain a fast algorithm for deciding

if [y1], . . . , [yk] are part of a basis.

We will need a slightly different version of Whiteheads theorem, which can be
found in R. Martin’s PhD thesis [22] (proof attributed to M. Bestvina). The the-
orem in [22] is stated and proved for one conjugacy class but the proof of the
statement for several conjugacy classes needs no modification thus we omit it. To
state the theorem we need to define the generalized Whitehead graph and the de-
composition space of [y1], . . . , [yk].

We define the generalized Whitehead graph Whm([y1], . . . , [yk];B) as follows.
Consider R0 the bouquet of n circles e1, . . . , en labelled by x1, . . . , xn. Represent

[y1], . . . , [yk] by immersed loops α1, . . . , αk in R0. Let T = R̃0 the universal cover
of R0 with some basepoint, and lift α1, . . . , αk to a family of lines in T . The
vertices of the Whitehead graph are in 1-1 correspondence with the vertices lying
on the sphere of radius m centered at the basepoint, i.e. the words of length m
in the basis x1, . . . xn. Two of these vertices w,w′ are connected by an edge in
Whm([y1], . . . , [yk];B) if there exists α̃i a lift of one of the αis such that w,w′ both
lie on α̃i. It is easy to see that Wh1([y1], . . . , [yk];B) = WhB([y1], . . . , [yk]).

We will also associate to [y1], . . . [yk] a quotient space of ∂T . The boundary of T
is the set of ends of T , i.e. the set of equivalence classes of rays where two rays are
identified if they have infinite intersection. A basis for a topology on ∂T is given
by finite words in Fn: Let w be a reduced word in Fn and let β be the path from 1
to w . Uw is the set of geodesic rays emanating from the basepoint that contain β.
{Uw} is a basis for a topology on ∂T . Given [y1], . . . , [yk] define ∂T/[y1], . . . , [yk] to
be the quotient space of ∂T where [r] ∼ [r′] if there is an α̃ a lift of one of α1, . . . , αk
such that one of α̃ endpoints is [r] and the other is [r′]. Endow ∂T/ ∼ with the
quotient topology. ∂T/[y1], . . . , [yk] is called the decomposition space associated to
[y1], . . . , [yk].
We are now ready to reformulate Whitehead’s result:

Theorem 1.3 ([22]). For any set of elements y1, y2, . . . , yk the following are equiv-
alent:

(1) [y1], . . . , [yk] agree with a proper splitting of Fn up to conjugacy, i.e. there is
a splitting Fn = A ∗B such that for each 1 ≤ i ≤ k: [yi] ∈ [A] or [yi] ∈ [B].

(2) The decomposition space ∂Fn/[y1], . . . , [yk] is disconnected.
(3) For any basis B there is some m such that Whm([y1], . . . , [yk];B) is discon-

nected.
(4) If B is a basis such that WhB([y1], . . . , [yk]) contains no cut vertex then it

is disconnected.
(5) There exists a basis B such that WhB([y1], . . . , [yk]) is disconnected.
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Outer automorphisms. While it has now become an object of independent study,
initially Outer Space’s raison d’être was the study of the group of outer automor-
phisms of the free group Out(Fn) = Aut(Fn)/Inn(Fn). An outer automorphism Φ
is reducible if there is a splitting Fn = A1 ∗A2 ∗ · · · ∗Ak ∗B with Ai 6= 1 and either
B 6= 1 or k ≥ 2 such that Φ permutes the factors A1, . . . , Ak up to conjugacy. If Φ
is not reducible then it is irreducible. Φ is fully irreducible, also called IWIP (irre-
ducible with irreducible powers), if for all i > 0, Φi is irreducible. Φ is geometric
if there exists a surface automorphism f : S → S of a surface S with π1(S) = Fn
such that [f∗] = Φ. Except for the case n = 2 where all outer automorphisms are
geometric; geometric outer automorphisms are a small subset of Out(Fn).
There is a natural right action of OutFn by homeomorphisms of CVn (when we in-
troduce a metric on CVn we shall see that this is actually an isometric action). Let
(G, h) ∈ CVn and Φ an outer automorphism. Let f : R0 → R0 be a map such that
[f∗] = φ define (G, h) ·Φ = (G, h◦f). The homotopy class of h◦f is independent of
the choice of f so we get a well defined action. This action has finite stabilizers but
is not cocompact. However, CVn has a spine (a contractible deformation retract
of CVn) on which the restriction of the action of Out(Fn) is cocompact (see [14]
for details). Therefore, CVn is a nice topological model for Out(Fn). We aim to
demonstrate in this work that it is a good geometric model for it as well.

Train-track structures and maps. Let G be a graph. An unordered pair of
oriented edges {e1, e2} is a turn if e1, e2 have the same initial endpoint. Let ē
denote the edge e with the opposite orientation. If an edge path α = · · · e1e2 · · · or
α = · · · e2e1 · · · then we say that α crosses or contains the turn {e1, e2}.

Definition 1.4. A train track structure on G is an equivalence relation on the set
of oriented edges E(G) with the property that if e1 ∼ e2 then {e1, e2} is a turn.

A turn {e1, e2} is legal with respect to a fixed train-track structure on G if
e1 fi e2. An edge path is legal if every turn it crosses is legal. The equivalence
classes of the edges are called gates. Let f : G → G be a map such that on every
edge it either collapses it to a point, or restricts to an immersion. Let Df : E → E
be a map on E - the set of oriented edges in G, which sends each edge to the first
edge in its image (can be thought of as a kind of derivative). f induces a map Tf
on the set of turns Tf(e, e′) = (Df(e), Df(e′)). In [8] Bestvina and Handel made
the following definition.

Definition 1.5. f is called a train-track map if it preserves a train-track structure,
i.e. if there is a train-track structure on G such that f takes legal turns to legal
turns.
Equivalently, f is a train-track map if f i(e) is an immersed path for each i ∈ N and
each edge e ∈ E.

In [8] they lay out an algorithm which produces train-track map f for any ir-
reducible outer automorphism Φ, with [f∗] = φ. Up to scale, there is a unique
assignment of lengths to G and a constant λ (the growth rate of f , or the PF eigen-
value of f) so that for every edge e we have length(f(e)) = λlength(e). Although f
is not unique in the sense that there might be many train-track maps representing
a given automorphism, λ depends only on Φ.
Given a concatenation of legal paths α · β, there might be some cancellation in
f(α)·f(β). However, Cooper proved in [12] that the amount of cancellation bounded
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by a constant K = BCC(f) which depends only on f (and not on the paths). Fol-
lowing [4] we define Ccrit the critical constant for f as Ccrit = 2K

λ−1 (where λ is the

PF eigenvalue of f). For every C > Ccrit there is a µ such that for any legal paths
α, β, γ where β’s length is greater than C, [fk(α ·β · γ)] contains a legal segment of
length at least µλklength(β) contributed by fk(β).

Laminations of fully irreducible automorphisms. Let f : G→ G be a train-
track map of an irreducible outer automorphism. By replacing f with a power if
necessary, we may assume that f has a fixed point x in the interior of an edge. Let I
be an ǫ neighborhood of x so that f(I) ⊃ I. Choose an isometry ℓ : (−ǫ, ǫ) → I and
extend uniquely to a local isometric immersion ℓ : R → G so that ℓ(λmt) = fm(t)
for all t ∈ R. The attracting lamination in G, Λ+(G), is the collection of all such
immersions ℓ called attracting leaves. A stable leaf subsegment is the restriction of
ℓ to a subinterval of R. Different leaves have the same leaf subsegments. Given a
different metric graph H ∈ CVn and a homotopy equivalence τ : G → H , Λ+(H)
the attracting lamination in the H coordinates is the collection of immersions [τℓ]
pulled tight. An important feature of these laminations is:

Proposition 1.6 ([4] Proposition 1.8). Every leaf of Λ+
Φ is quasi-periodic.

This means that for every length L there is a length L′ such that if α, β ⊆ ℓ
are subleaf segments with length(α) = L and length(β) > L′ then β contains an
occurrence of α. One can think of ℓ as a necklace made of beads. The segments of
length L that appear in ℓ are beads of different colors. The proposition tells us that

in any subchain of L′

L consecutive beads we can find beads of all possible colors.

Parameterization of Outer Space. Unnormalized Outer Space X is the space
of metric graphs where two are equivalent if there is an isometry homotopic to the
difference in marking. There is a similar definition in terms of trees. CVn is a
section of X . One parameterization of CVn is to take the set of volume 1 graphs in
X
This is useful, but unfortunately, doesn’t extend to the boundary. Another pa-
rameterization that we will use which does extend to the boundary is as fol-
lows: By Serre’s theorem there is a finite set of conjugacy classes (for example
[x1], . . . , [xn], [x1x2], . . . [xn−1xn]) which cannot be simultaneously elliptic in any
minimal Fn-tree. Then CVn is the section where the sum of their translation
lengths is 1.

2. The Lipschitz metric on CVn

Let (X, f), (Y, g) be two marked metric graphs of volume 1. Consider:

L(X,Y ) =
{
Lip(h) ∈ R

∣∣h is Lipschitz and homotopic to g ◦ f−1
}

Note that h does not necessarily take vertices to vertices. Define the distance from
X to Y to be:

d(X,Y ) = log inf L(X,Y )

By Arzela-Ascoli L(X,Y ) has a minimum. Moreover, it is enough to consider maps
which are linear on edges. Indeed, for any map h one can construct a homotopic
map h1 which is linear on edges by defining h1(v) = h(v) on every vertex v and
sending an edge (v, w) to the immersed path [h(v), h(w)] which is homotopic to
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Im(h|(v,w)) rel endpoints and parameterized at constant speed. It is clear that
Lip(h1) ≤ Lip(h). Therefore we can usually restrict our attention to such maps.

To see that d(X,Y ) really defines a (non-symmetric) metric note the following:

(1) If d(X,Y ) = 0 then there is a map h homotopic to the difference in marking
with Lip(h) = 1. Since h is a homotopy equivalence and X,Y don’t contain
valence 1 vertices then h is surjective. Lip(h) = 1 implies that h doesn’t
stretch edges. Since h is onto and vol(X) = vol(Y ) = 1, it cannot shrink
edges either. h is linear so h′(x) = 1 for all x ∈ X . h is injective, otherwise
vol(Y ) ≤ vol(Imh) < vol(X). We conclude that h is a bijection with h′ ≡ 1
thus it is an isometry from X to Y . Since it is homotopic to the difference
in marking we get X = Y in CVn.

(2) If h1 : X → Y , h2 : Y → Z are optimal maps, then h = h2◦h1 is homotopic
to the difference in marking from X to Z, thus Lip(h) ≥ minL(X,Z). But
the chain rule implies Lip(h1)Lip(h2) ≥ Lip(h) ≥ minL(X,Z) taking log
we get d(X,Y ) + d(Y, Z) ≥ d(X,Z).

Conventions and notation. If αX is an immersed loop in X then it represents
a conjugacy class α of π1(X, p). For every marked graph Z, we shall denote by αZ
the immersed loop representing α in the graph Z.
If the loop αX is not an immersed loop, we denote by [αX ] the immersed loop
representing the same conjugacy class.
For a path γX in X ∈ CVn, the length of γX in X is denoted by l(γX , X). For a
conjugacy class γ in Fn the length of the immersed loop representing γ in X will
be denoted l(γ,X).

We now prove that the optimal Lipschitz constant of a map from X to Y is equal
to the stretch factor of the maximally stretched loop. For two points X,Y ∈ CVn
and a conjugacy class α, denote the stretch of α fromX to Y by Stα(X,Y ) = l(α,Y )

l(α,X) .

Let

S(X,Y ) = {Stα(X,Y )|α is a conjugacy class in Fn}

Theorem 2.1 (T. White see [17]).

minL(X,Y ) = maxS(X,Y )

Proof. Let α be a conjugacy class represented in X by the immersed loop αX . The
loop h(αX) represents α in Y , it might not be immersed. We denote by [h(αX)]
the tightened image of h(αX). Then

(1) l(α, Y ) = l([h(αX)], Y ) ≤ l(h(αX), Y ) ≤ Lip(h)l(α,X)

We deduce that maxS(X,Y ) ≤ minL(X,Y ). Notice that we get equality in equa-
tion 1 iff all of the edges which αX crosses are stretched by Lip(h) and h(αX) is a
tight loop in Y . The goal is now to find a map h for which such a loop exists.

Given a map h : X → Y which is linear on edges, let Xh be the subgraph of
all edges e such that St(h, e) = Lip(h). h induces a train-track structure on X :
two edges e1, e2 belong to the same gate if h(e1), h(e2) define the same germ. The
inclusion Xh ⊆ X induces a train-track structure on Xh.

Let h be an optimal map, linear on edges and so that Xh is smallest among all
optimal maps. We claim there are at least two gates at each vertex. See figure 1
for an example. In general, suppose by way of contradiction that there is a vertex
v where Xh contains only one gate at v. Let S2 = max{St(h, e)|e /∈ Xh} be the
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second largest derivative, and ε = Lip(h)−S2. Define a map h1 by h1(u) = h(u) for
all vertices u 6= v. To define h1(v) take any e ∈ Xh adjacent to v, define h1(v) the
point on the germ defined by h(e) a distance < ε · (length of smallest edge in Y )
away from h(v). Define h1 to be homotopic to h and linear on edges.

f

e2

v

e1
w′

a1

w

a3a2

Figure 1. The following is an example of a map f where Xf has
a vertex with one gate. We show that the map is not optimal. In
the graph on the left both edges have length 1

2 and in the graph

on the right all three edges have length 1
3 . Suppose the map f

takes e1 → a2a3 and e2 → a1a2a1a3a2a1. The stretch of f on e1
is 2/3

1/2 = 4
3 and the stretch of f on e2 is 6/3

1/2 = 4, so Lip(f) = 4

and Xf = {e2, e2}. Both e2, e2 begin with a1 so Xf contains only
one gate at v. Let w′ be a point on a1 which is ε away from v
where 2ε < 4 − 4

3 . w′ divides a1 into two edges b1, b2. Consider

the map f1 which takes e1 → b1a2a3b1 and e2 → b2a2b1b2a3a2b2.

f1 is homotopic to f . f1 stretches e1 by 2/3+2ε
1/2 = 4+12ε

3 and e2 by
2−2ε
1/2 = 4 − 4ε. Since ε is small enough Lip(f1) = 4 − 4ε which is

smaller than Lip(f).

We show that S2 < St(h1, e) < Lip(h) for every edge e ∈ Xh adjacent to v.

St(h1, e) = Lip(h)len(e)−ε·length of smallest edge
len(e) > Lip(h)len(e)−εlen(e)

len(e) = Lip(h) − ε =

S2. Therefore, either Lip(h1) = Lip(h) with Xh1
 Xh, or Lip(h1) < Lip(h) which

contradictions the choice the h. Thus we’ve shown that there are at least two gates
for every vertex of Xh.

Consider a legal path αX ∈ Xh which intersects itself twice. Such a path will
contain a legal subloop. Indeed parameterize α so that α : [0, 1] → Xh with
α(0) = α(t1), and α(t2) = α(1) where 0 < t1 ≤ t2 < 1. If D+α(0) 6= D−α(t1) then
α|[0,t1] is a legal loop, if D+α(t2) 6= D−α(1) then α|[t2,1] is a legal loop. Otherwise
α ∗ [α(t2), α(t1)] is a legal loop. Legal loops are mapped to tight loops in Y thus if
h is as above there is a maximally stretched loop α with stretch constant equal to
the Lipschitz constant of h. ˜

This proof shows a bit more: there is a relatively short loop which is maximally
stretched. The following theorem from [17] makes this precise.

Theorem 2.2 ([17]). For any two points X,Y ∈ CVn there is a maximally stretched
loop αX whose image is one of the following:



10 YAEL ALGOM-KFIR

(1) an embedded circle.
(2) a wedge of two embedded circles.
(3) a barbell i.e. α is a concatenation of γ1γ2γ3γ2 where γ1 and γ3 are disjoint

embedded circles and γ2 is an embedded path which intersects γi, i = 1, 3 in
exactly one point which is one of its endpoints.

Such a loop can contain at most |E| edges where |E| is the number of edges in
X . By an Euler-characteristic argument |E| ≤ 3n− 3 therefore αX crosses at most
3n− 3 edges.

Definition 2.3. Let X be a point in CVn. Define the set of candidates of X ,
Can(X) as the set of loops of the type described in theorem 2.2.

Corollary 2.4. The distance is realized by one of the candidates of X:

d(X,Y ) = log max

{
l(α, Y )

l(α,X)

∣∣∣∣α ∈ Can(X)

}

Corollary 2.5. If αX , βX ∈ Can(X) and their images in X are different sets then
α, β can be completed to a basis.

Proof. Let J by a maximal forest in X which doesn’t contain an edge ei of ImαX r
ImαY . Collapse J to get RX a wedge of circles. Since ei was not collapsed,
ImαR 6= ImβR. Let ej ⊆ βR be any edge then < αR, βR, e1, . . . , êi, . . . , êj , . . . en >
represents a basis for Fn. ˜

m−1

m

1

m
1

2

1

2

y x

X

y

x

Y

Figure 2. An example where d(X,Y ) = log 2m−2
m ∼ log 2 and

d(Y,X) = log m
2

2.1. Non-symmetry of d(X,Y ).

Example 2.6. Figure 2 shows an example of two graphsX,Ym such that d(X,Y ) =
log Sty(X,Y ) = log

(
2m−2
m

)
however going the other way, the distance is attained

on x and d(Y,X) = log Stx(X,Y ) = log
(

1/2
1/m

)
= log

(
m
2

)
. Therefore we cannot

hope for the metric to be symmetric up to a multiplicative constant.

However, not all is lost, one can say something if we forget the metric structure
on the graphs and consider them as topological graphs with a marking. In [18]
Handel and Mosher studied a combinatorial metric on the space of such graphs
defined as follows. Let h : X → Y be a simplicial map (i.e. vertices are mapped
to vertices) homotopic to the difference in marking. Define the stretch of h as the
total volume of the image of h, i.e. T (h) =

∑
e∈X |h(e)| where |h(e)| is the number

of edges h(e) crosses. Let dcomb(X,Y ) = log min{T (h)|h ∼ g ◦ f−1}. They prove:
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Theorem 2.7 ([19]). There is a constant c = c(n) such that

1

c
· dcomb(Y,X) ≤ dcomb(X,Y ) ≤ c · dcomb(Y,X)

for any X,Y ∈ CVn.

Definition 2.8. For θ > 0 the θ-thick part of CVn is

CVn(θ) = {X ∈ CVn|l(α,X) ≥ θ for all α}

We can relate the Lipschitz metric to the combinatorial metric in CVn(θ).

Lemma 2.9. For any θ > 0 there is constant c = c(θ) such that: dcomb(X,Y )−c ≤
d(X,Y ) ≤ dcomb(X,Y ) + c for all X,Y ∈ CVn(θ).

Proof. Notice that each graph has no more than 3n − 3 edges, and the length of
any edge is bounded below by θ and above by 1 − θ. Let T (h) = edcomb(X,Y ) then

Lip(h) = max
{
l(h(e),Y )
l(e,X)

∣∣∣ e ∈ X
}
≤

∑
e∈X

l(h(e),Y )
l(e,X) ≤

∑
e∈X

(1−θ)|h(e)|
θ

(1−θ)
θ

∑
e∈X |h(e)| = 1−θ

θ T (h)

Therefore d(X,Y ) ≤ dcomb(X,Y ) + log 1−θ
θ .

Now suppose that f : X → Y realizes the Lipschitz distance. Homotope f to a
simplicial map f ′ : X → Y by moving the images of vertices in X to vertices of
Y , and pulling tight the images of edges. For each edge l(f ′(e), Y ) ≤ l(f(e), Y ) +
2(1 − θ). Thus

ed(X,Y ) = Lip(f) = max
{
l(f(e),Y )
l(e,X)

∣∣∣ e ∈ X
}
≥ max{l(f(e), Y )) | e ∈ X} ≥

1
3n−3

∑
e∈X l(f(e), Y ) ≥ 1

3n−3

∑
e∈X [l(f ′(e), Y ) − 2(1 − θ)] ≥

θ
3n−3

∑
e∈X |f ′(e)| − 2(1 − θ) ≥ θ

2(3n−3)T (f ′)

The last inequality holds when T (f ′) ≥ 4(3n−3)
θ . We thus get

d(X,Y ) ≥ dcomb(X,Y ) − log
2(3n− 3)

θ
˜

Putting together Lemma 2.9 and Theorem 2.7 we get:

Corollary 2.10. For any θ > 0 there is constant c = c(θ) such that:

1

c
· d(Y,X) ≤ d(X,Y ) ≤ c · d(Y,X)

for any X,Y ∈ CVn(θ).

3. Axes in CVn of fully irreducible automorphisms

It is straightforward to check that the right action of Out(Fn) on CVn is an
isometric action. Furthermore, if f : G → G represents φ ∈ Out(Fn) and the loop
αG represents α in G then [f(αG)] is a tight loop in Gφ representing α in Gφ.

Definition 3.1 (Fold line). Given an irreducible train-track map f : G0 → G0

we define a fold line from G0 to G0 · φ. At each stage we will have a map gs :
Gs → G0 · φ where g0 = f and glog(λ) = id. We define the path G : [0, log(λ)] →
CVn and the maps gs inductively. Progress is measured by the size of P (gs) =
g−1
s (vertices of G0φ). Let e1, e2 be two edges, with common initial vertex v and
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which are taken to the same germ under f , i.e. {e1, e2} is illegal. Consider ei as
paths with ei(0) = v and let R = max{r | ∀s ≤ r : f(e1(s)) = f(e2(s))}. At time
t, Gt is the graph obtained from G0 by folding the initial subsegments of e1, e2 of
length r = 1− e−t. Formally, Gt is the quotient graph of G0 under the equivalence
relation e1(s) = e2(s) for all s ≤ r where r = 1 − e−t and where edge lengths are
changed as follows: the length of all edges other than e1, e2 are scaled by et, and
the length of ei in Gt is et(|ei|0−(1−e−t)). We get a path G : [0, t1] → CVn, where

t1 = log
(

1
1−R

)
. We will later show that this is a geodesic parameterized according

to arc length. We define gs : Gs → G0 · φ as the quotient map of f : G0 → G0 · φ
under the equivalence relation. Notice that |P (gt1)| ≤ |P (g0)| − 1. We continue
constructing the path using gt1 instead of f . We’re guaranteed to stop after |P (f)|
steps, obtaining a fold path G from G0 to G0 ·φ. Notice that we have made choices
when deciding the order in which to fold the edges, but in any case this construction
yields at least one fold line.

e1 e2
e′′1 e′′2

yx−1
x

f

y
x2y−1

Figure 3. A train track graph G for the map f in example 3.2
and its image under the action of φ. The edge lengths in G(0) are

l(e1) = a = 3−
√

5
2 ∼ 0.382 and l(e2) = b =

√
5−1
2 ∼ 0.618, λ ∼

2.618.

Example 3.2. Consider the automorphism

φ =

{
x −→ xy
y −→ yxy

Since it is a positive automorphism the corresponding map on the rose with two
petals e1, e2 is a train-track map. To find the lengths of e1, e2 and the PF eigenvalue
λ we solve the linear system of equations





a+ b = λa
a+ 2b = λb
a+ b = 1

We get that the length of e1 is a = 3−
√

5
2 , the length of e2 is b =

√
5−1
2 and λ = 3+

√
5

2 .
See figure 3 for a picture of G0φ, the labels on the edges denote the inverse of the
marking. Notice that for each loop α in G0, f(α) represents the same conjugacy
class in G0φ. Figure 4 shows a fold path from G0 to G0φ. We start by folding e1, e2
until we completely wrap e2 over e1. We get a new graph G(log 1

1−a ) = G(log λ
λ−1 ),

with edges e′1, e
′
2 and edge lengths a

b = b and b−a
b = a respectively. Now we fold e′1

onto e′2 until we completely wrap e′1 over e′2. The parameter t of the final graph is
log( λ

λ−1 ) + log(λ − 1) = log(λ) and we get G(log(λ)) = G(0)φ.
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Proposition 3.3. The fold line G : [0, log(λ)] → CVn is a geodesic parameterized
according to arc length.

Proof. Let s ∈ [0, log(λ)] and define hs : G0 → Gs to be the composition of quotient
maps so that f = gs ◦hs. The key observation is that if α is legal in G0 with respect
to f then it is legal in G0 with respect to hs and hs(α) is legal in Gs with respect
to gs (see figure 5 ). Indeed consider α : S1 → G0. α is illegal with respect to hs if

there is a point x ∈ S1 and an ε-neighborhood of x such that α maps a punctured ε-
neighborhood of x homeomorphically into G0 and is two-to-one into Gs. However
it must then be at least two-to-one in Glog(λ) so it is illegal with respect to f .
Similarly, if h(α) is illegal with respect to gs then α is illegal with respect to f .

Recall that d(X,Y ) = log Stα(X,Y ) for any legal loop α with respect to the
train track structure induced by the difference in marking. Let β be a legal loop
in G0 with respect to f then it is legal with respect to hs and hs(β) is legal with
respect to gs. Thus d(G0, G0 ·φ) = log Stβ(G0, G0 ·φ), d(G0, Gs) = log Stβ(G0, Gs),
d(Gs, G0 · φ) = log Sth(β)(Gs, G0 · φ). Moreover, since there is no backtracking:

e2e1

x
y

G(s)G(0)

e′1 e′2

x
yx−1

G(log(λ))

e′′2e′′1

x2y−1

yx−1

G(log( λ
λ−1 )) G(log( λ

λ−1 ) + s)

Figure 4. A fold path G : [0, logλ] → CVn. Notice that if a loop
is legal in G(0) then it remains legal in G(s). This can be used to
show that the path is a geodesic in CVn

GsG0 G0 · φ

S1

hs gs

α αs

f

x

Figure 5. If a loop α is illegal with respect to hs or gs then it’s
illegal with respect to f .
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Stβ(G0, G0 · φ) = Stβ(G0, Gs) · Sth(β)(Gs, G0 · φ). Hence

d(G0, G0 · φ) = d(G0, Gs) + d(Gs, G0 · φ)

We’ve shown that G : [0, log(λ)] → CVn is a geodesic. We now turn to the
claim about the parameterization: let 0 < s < t1 then the d(G0, Gs) is realized
by a loop that doesn’t contain e1, e2 (i.e. any legal loop with respect to hs) thus

d(G0, Gs) = log
(
esl(α,G0)
l(α,G0)

)
= s. ˜

Definition 3.4 (An axis of a fully irreducible automorphism). Let φ be a fully
irreducible outer automorphism of Fn, f : G0 → G0 a train-track representative,
and λ the PF eigenvalue of φ. Let G : [0, log(λ)] → CVn be a (directed) fold line
which starts at G0 and ends at G0 · φ, which is a geodesic parameterized according

to arc length. For t ∈ R let k =
⌊

t
log λ

⌋
and define G(t) = G(t − k) · φk (i.e. we

translate G[0, λ] by φk and φ−k). Lf = Im(G) is an invariant geodesic line. We say
that Lf is an axis for φ.

Proposition 3.5. Lf is a (directed) geodesic parameterized according to arc length.

Proof. If α is legal at G(0) with respect to f2 : G(0) → G(0)φ2 then α is legal
with respect to f : G(0) → G(0)φ and f(α) is legal at G(0)φ with respect to
f : G(0) → G(0)φ. The rest of the argument is as in the proof of proposition
3.3. ˜

Define lα : R→ R by lα(t) = l(α,G(t)).

3.1. The projection to an Axis. Let φ be an outer automorphism, and suppose
f : G → G is a stable train-track map for φ and g : H → H is a stable train-track
map for φ−1. We will show that if α is primitive then there is a bounded set on
which lα(t) achieves its minimum, the bound is uniform over all conjugacy classes
α. This will allow us to coarsely define a “nearest point projection” πf : CVn → Lf .

We need the following lemmas and notions due to Bestvina, Feighn, and Handel
[4].

Definition 3.6. Given a train-track map f : G → G and a loop αG in G, the
legality of α with respect to the train-track structure of f is

LEGf(α,G) =
Total length of all legal pieces of length > Ccrit

l(α,G)

Lemma 3.7 (Lemma 5.6 in [4]). If φ is non-geometric there is a constant ǫ0 > 0
and an integer N such that for any conjugacy α:

LEGf (φ
N (α), G) > ǫ0 or LEGg(φ

−N (α), H) > ǫ0

We want some version of this lemma that will hold for geometric automorphisms.
In the proof of 3.7 the assumption that φ is non-geometric is used only to bound
the number of consecutive Nielsen paths appearing in αG. A Nielsen path of f is a
path which is periodic under iteration by f . If φ is geometric and fully irreducible
and f is stable, then there is a unique indivisible Nielsen path β for f in G and
this path is in fact a loop. Thus no such bound exists, and indeed the statement
in Lemma 3.7 does not hold for β. Therefore, we shall restrict our attention to the
case where α is a primitive conjugacy class.
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Proposition 3.8. There is a bound K which depends only on φ, such that if α is
a basis element then αG cannot cross more than K consecutive pre-Nielsen paths.

Proof. The case where φ is non-geometric is handled in [4].
If φ is geometric then f has a Nielsen loop β. If f : G → G is stable then β is the
only indivisible Nielsen path. Now if αG crosses two pre-Nielsen loops consecutively
then for some m: fm(α) crosses β twice consecutively. Therefore the Whitehead
graph WhG(fm(α)) will contain WhG(β) which is a circle (it corresponds to the
boundary of the surface which is a commutator and the whitehead graph of a
commutator is a circle). Therefore, WhG(fm(α)) will be connected with no cut
vertex so by Whitehead’s theorem it cannot be a basis element. Thus, if αG crosses
two consecutive pre-Nielsen paths then it cannot be a basis element. ˜

Putting together proposition 3.8, corollary 2.5 and the proof of 3.7 we get:

Lemma 3.9. For any irreducible outer automorphism φ there is a constant ǫ0 > 0
and an integer N such that for any primitive conjugacy class α,

LEGf (φ
N (α), G) > ǫ0 or LEGg(φ

−N (α), H) > ǫ0

if φ is non-geometric this holds for all α. In particular, the above holds for a
conjugacy class α which corresponds to a candidate αX in some marked graph X.

Fix a primitive conjugacy class α. Notice that if LEGf (φ
N (α), G) ≥ ǫ then

LEGf(φ
m(α), G) ≥ ǫ for all m > N . Define

k0 = max{k|LEGf(φk(α), G) < ǫ0}
k′0 = min{k|LEGg(φ

k(α), H) < ǫ0}

Since LEGf (φ
k0 (α), G) ˝ ǫ0 lemma 3.9 implies LEGg(φ

k0−2N (α), H) > ǫ0 thus

|k0 − k′0| < 2N3.9

The next lemma states that if a loop has legality bounded away from zero, then
its growth is exponential.

Lemma 3.10 (Lemma 5.5 in [4]). For any A > 0 there is an N such that if
LEGf(α,G) > ǫ0 then l(G, fN(α)) > A · l(G,α).

We devote the rest of the section to reformulating these results into lemmas that
involve the metric.

Corollary 3.11. There is an N > 0 such that for any primitive α both:

l(φk+N (α), G) > 2 · l(φk(α), G) For k ≥ k0

l(φk−N (α), G) > 2 · l(φk(α), G) For k ≤ k0

Proof. Let c1 = exp(d(H,G)) and c2 = exp(d(G,H)) then for any conjugacy class
α:

(2) l(α,G) < c1l(α,H) l(α,H) < c2l(α,G)

Let N1 = N3.9 and c3 = exp(d(Hφ−2N1 , H)) so for all conjugacy classes α:

(3) l(α,H) < c3l(α,Hφ
−2N1)

In lemma 3.10 take A = max{2, 2c1c2c3} then there is an N2 such that:

(4)
if LEGf (β,G) > ǫ0 then l(φN2(β), G) > A · l(β,G)
if LEGg(β,H) > ǫ0 then l(φ−N2(β), H) > A · l(β,H)
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Let β = φk(α), then for k ≥ k0: LEGf (φ(β), G) > ǫ0 so l(φN2+1(β), G) > 2l(β,G).
For k ≤ k0: Recall that |k′0 − k0| < 2N1 so LEGg(φ

k0−2N1(α), H) > ǫ0. Therefore,
LEGg(φ

−2N1(β), H) > ǫ0 and so by equation 4 we get

l(φ−2N2−N1(β), H) > 2c1c2c3 · l(φ−2N1(β), H) =
2c1c2c3 · l(β,Hφ−2N1) > 2c1c2 · l(β,H)

Denote N = 2N1 + N2 then by the previous inequality we get 2c1l(β,H) <
1
c2
l(φ−N (β), H). Using this and the formulas in 2 we have

2 · l(β,G) < 2c1 · l(β,H) <
1

c2
· l(φ−N (β), H) < l(φ−N (β), G)

˜

It follows that for N from Corollary 3.11:

l(φk0+jN (α), G) > 2j · l(φk0(α), G)
and

l(φk0−jN (α), G) > 2j · l(φk0(α), G)

Let λ be the PF eigenvalue of φ and ν the PF eigenvalue for φ−1. Let t0 ={
k0 log(λ) if k0 > 0
k0 log(µ) if k0 < 0

Replacing N with s in the inequalities above, we reformu-

late them as follows.

Corollary 3.12. There exists a constant s > 0 such that for a primitive α if

|t− t0| > s: We define j =

{
⌊ t−t0
s log λ⌋ for t > t0

⌊ t0−t
s log µ⌋ for t < t0

then

l(α,G(t)) > 2j l(α,G(t0))

Definition 3.13 (min set). For a primitive conjugacy class α: let L = min{lα(t) |
t ∈ R} and denote by Tα the set of tα such that lα(tα) = L. The min set of α is
πf (α) = {G(tα) | tα ∈ Tα}.

It follows from corollary 3.12 that |tα − t0| < s3.12 for every tα ∈ Tα.

Corollary 3.14. There is an s > 0 such that for every primitive conjugacy class
α, diam(πf (α)) < s.

In subsequent sections we usually suppress the constant s in corollary 3.14. Re-
call that |k0 − k′0| < 2N3.9 and that |tα − t0| < s3.12 thus:

Corollary 3.15. There is an s > 0 such that for every primitive α:

∀G′ ∈ πf (α) ∀H ′ ∈ πg(α) : d(G′, H ′) < s

I.e. the min sets of α with respect to Lf and Lg are uniformly close.

Corollary 3.16. There is an s > 0 such that for every primitive α, if t > tα + s
then LEG(α,G(t)) > ǫ0.

Now we are in a position to define a coarse projection πf : CVn → Lf . Let
X ∈ CVn and TX = {t | d(X,G(t)) = d(X,Lf )}. Define the projection of X to Lf :
πf (X) = {G(t) | t ∈ TX}.

Proposition 3.17. There is an s > 0 such that for every point X ∈ CVn:
diam(π(X)) < s.
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Proof. For each candidate α of X : lα(t) is coarsely decreasing on (−∞, tα − s3.12],
coarsely increasing on [tα + s3.12,∞) and has a minimum in [tα − s3.12, tα + s3.12].

The function St(αt) = lα(t)
l(α,X) differs from lα(t) by the multiplicative constant 1

l(α,X) .

So St(αt) behaves similarly. Now notice that if l1, l2 : R→ R are two such functions
then h = max{l1, l2} also has a coarse minimum see figure 6 . Since there is only
a finite number of candidates (depending only on n) then the diameter of π(X) is
uniformly bounded. ˜

Figure 6. If two functions have a coarse minimum then their max
has a coarse minimum.

We remark that using the fact that the length map l(α, t) is coarsely exponential
we can show that πf : CVn → Lf is coarsely Lipschitz. However we will get a
better result in Corollary 5.10.

4. The Whitehead graph of the attracting and repelling laminations

We’ve defined the Whitehead graph of a conjugacy class α in the basis B. If
X ∈ CVn is a rose, then WhX(α) the Whitehead graph of the loop α is the
Whitehead graph of the conjugacy class represented by α in the basis represented
by the edges of X . Similarly we can define the Whitehead graph, WhX(λ) of any
quasi-periodic bi-infinite edge path λ in X . This section is devoted to proving
lemma 4.2 which produces a rose F in CVn such that the Whitehead graph of the
attracting and repelling laminations of a fully irreducible automorphism does not
contain a cut vertex. We remark that the discussion in this section could have been
carried out using currents instead of laminations. In that case Lemma 4.1 could be
replaced by the stronger results of Kapovich and Lustig in [20].

Let φ be a fully irreducible automorphism, and f : G0 → G0 a train-track

representative for φ. Let T0 be the universal cover of G0, and f̃ : T0 → T0 a
lift of f . Suppose Λ+

φ (G0) is the attracting lamination of φ realized as bi-infinite

lines in G0. Given a metric tree T in X (unnormalized outer space) one can define
the length of the lamination Λ+ in T , scaled with respect to T0, as follows. Let
h : T0 → T be an equivariant Lipschitz map and let σ be a subsegment of the leaf
λ ∈ Λ+

φ (G0) and σ̃ be a lift of σ to T0. Let [h(σ̃)] the tightened image of σ̃ in T
then

(5) lT0
(Λ+, T ) = lim

σ→λ

l([h(σ̃)], T )

l(σ̃, T0)

This is not an invariant quantity under resealing the metric of T . Therefore, we
modify the definition for [T ]: Let [w1], . . . , [wJ ] be a set of conjugacy classes in
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Fn which cannot be simultaneously elliptic. Let tr(w1, T ), . . . , tr(wJ , T ) be their

translation lengths in T and d(T ) =
∑J

i=1 tr(wi, T ) then

(6) l[T0](Λ
+, [T ]) =

lT0
(Λ+, T )

d(T )

Lemma 4.1. The limit in equation 5 exists, and it is independent of the choice of
h. Moreover, the map l[T0](Λ

+, ·) : CVn → R is continuous.

Proof. We begin by showing that the limit exists. This boils down to the fact that
λ is quasi-periodic. If σ ⊆ λ is long enough then σ is a concatenation of a list
of words τ1, . . . , τm (like beads on a necklace) which appear with fixed frequencies
r1, . . . , rm. We can choose the beads/tiles long enough so that the cancellation in
h(τ̃i)h(τ̃j) is negligible with respect to the length of τi. Thus h(σ̃) (up to small
cancellation) is a concatenation of the tiles h(τ̃i), which appear with frequency ri.

So
lT0

(h(eσ)),T )

lT0
(eσ,T0)

∼
Pm

i=1
ril(h( eτi),T )P

m
i=1

ril( eτi,T0) . This expression can easily be shown to converge

as k → ∞.

Let L = Lip(h) and C = BCC(h). Denote the edges of G0 by e1, . . . , em. For
each k the i-th k-tile is τi = fk(ei) where 1 ≤ i ≤ m. We use li(T0) = l(τ̃i, T0), and
li(T ) = l([h(τ̃i)], T ) for shorthand but notice that we’re suppressing a dependence
on k. Let A = max{li(T0)|1 ≤ i ≤ m} and B = min{li(T0)|1 ≤ i ≤ m}. Suppose k
is large enough so that 2C

B < ǫ.

Each leaf λ of Λ+
0 has a natural 1-tiling by edges in G0. The standard j-tiling of

λ is the f j image of the 1-tiling of f−j(λ). σ is sandwiched between σ1 ⊆ σ2 which
are both k-tiled and l(σ̃1, T0) < l(σ̃2, T0) < l(σ̃1, T0) + 2A.

Let Ni = #occurrences of the tile τi in the tiling of σ1, and N =
∑m

i=1Ni. By

Perron-Frobenius theory there are r1, . . . , rm such that Ni

N → ri as σ1 → λ. Let

ak =
Pm

i=1
rili(T )P

m
i=1

rili(T0)
where k stands for k-tiles. We show that for large enough σ,

l(h[eσ],T )
l(σ,T0)

is in [ak − ǫ, ak + ǫ].

We have:

l([h(eσ1)],T )
l(eσ2,T0)

≤ l([h(eσ)],T )
l(eσ,T0) ≤ l([h(eσ2)],T )

l(eσ1,T0)

The right hand side limits to:

l([h(eσ2)],T )
l(eσ1,T0) ≤

Pm
i=1

Nili(T )+2ALP
m
i=1

Nili(T0) =

Pm
i=1

Ni
N
li(T )+ 2AL

NP
m
i=1

Ni
N
li(T0)

−−−−→
N→∞

Pm
i=1

rili(T )P
m
i=1

rili(T0)

The left hand side limits to:

lT (h[eσ1])
lT0

(eσ2) ≥
Pm

i=1
Ni[li(T )−2C]P

m
i=1

Nili(T0)+2A

=
Pm

i=1
Nili(T )P

m
i=1

Nili(T0)+2A −
Pm

i=1
Ni2CP

m
i=1

Nili(T0)+2A
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≥
Pm

i=1

Ni
N
li(T )

P
m
i=1

Ni
N
li(T0)+2A

− N ·2C
NB+2A

−−−−→
N→∞

Pm
i=1

rili(T )P
m
i=1

rili(T0) −
2C
B

≥
Pm

i=1
rili(T )P

m
i=1

rili(T0) − ǫ

Thus, for all ǫ, and for large enough σ:

(7) ak − ǫ ≤
l([h(σ̃)], T )

l(σ̃, T0)
≤ ak + ǫ

Since fN(τi) is tiled by τi for large enough N , the intervals [akN − 2−kN , akN +
2−kN ] are nested. By Cantor’s nested intervals lemma ak converges. Thus the limit

(8) lim
σ→λ

lT (h[σ̃])

lT0
(σ̃)

= c

exists.

Next, we show that this limit doesn’t depend on the choice of h. We claim that if
h′ : T0 → T is another equivariant Lipschitz map, then |l([h(σ)], T )−l([h′(σ)], T )| <
2D for some D. Thus the limit in equation 8 is the same for both h and h′. In-
deed let p be some point in T0. Then for all x ∈ T0 there is a g ∈ Fn such
that dT0

(x, g · p) ≤ 1. Hence d(h(x), h′(x)) ≤ d(h(x), h(gp)) + d(h(gp), h′(gp)) +
d(h′(gp), h′(x)) ≤ Lip(h) + d(h(p), h′(p)) + Lip(h′). Denote this constant by D.
Thus, for any path σ ⊆ T0 the initial and terminal endpoints of h(σ), h′(σ) are
D-close, so |l([h(σ)], T ) − l([h′(σ)], T )| < 2D.

Finally we want to show that l[T0](Λ
+, [T ]) depends continuously on [T ].

l[T0](Λ
+, [T ]) = lim

k→∞

1∑m
i=1 rili(T0)

∑m
i=1 rili(T )

d(T )

Without loss of generality suppose tr(w1, T ) 6= 0. If [Tj] −−−→
j→∞

[T ] then
li(Tj)

tr(w1,Tj)
→

li(T )
tr(w1,T ) for all 1 ≤ i ≤ m so:

Pm
i=1

rili(Tj)

d(Tj)
=

Pm
i=1

rili(Tj)/tr(w1,Tj)

d(Tj)/tr(w1,Tj)
−−−→
j→∞

Pm
i=1

rili(T )/tr(w1,T )

d(T )/tr(w1,T ) =
Pm

i=1
rili(T )

d(T )

˜

Lemma 4.2. There is a point F ∈ CVn such that for any leaves λ ∈ Λ+
φ (F ) and

ν ∈ Λ−φ (F ), the whitehead graph WhF (λ, ν) is connected and contains no cut vertex.

To prove this lemma we will need the following proposition proven by Levitt and
Lustig [21].

Proposition 4.3. If l[T0](Λ
+, [T ]) = 0 then l[T0](Λ

−, [T ]) 6= 0

Proof. Proposition 5.1 in [21] shows this for a tree T with dense orbits. For a
general tree the proof can be found in section 6 of [21]. ˜
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Proof of Lemma 4.2. First recall that if λ1, λ2 ∈ Λ+(X) are leaves of the attracting
lamination then they share the same leaf segments so for anyX ∈ CVn, WhX(λ1) =
WhX(λ2). Since the choice of the leaves doesn’t affect the whitehead graph, fix
leaves λ ∈ Λ+ and ν ∈ Λ− once and for all.

Pick a point X0 ∈ CVn whose underlying graph is a rose where all edges have
length 1

n . It was proven in [4] that WhX0
(ν),WhX0

(λ) are both connected. If
WhX0

(ν)∪WhX0
(λ) contains a cut vertex, then letX1 ∈ CVn be the point obtained

from X0 by leaving the underlying graph unchanged and changing the marking by
the whitehead move described right after theorem 1.2. Continue this way to get
a sequence X0, X1, X2, . . . We will show that this process terminates in a finite
number of steps with a graph F = XN for which WhF (ν) ∪ WhF (λ) doesn’t
contain a cut vertex. A priori, two other cases are possible: Xk = Xj for some
j > k, and the process never terminates producing an infinite sequence {Xi}

∞
i=1.

Observation 4.4. For all i we have lT0
(Λ+, X̃i) > lT0

(Λ+,]Xi+1) and lT0
(Λ−, X̃i) >

lT0
(Λ−,]Xi+1)

We put off the proof of this observation to show that the Lemma follows.
Xk = Xj for k < j is impossible since the lengths get strictly smaller. If the
process doesn’t terminate then we get an infinite sequence {Xi}∞i=1 which has a

subsequence converging to [T ] ∈ CVn. In CVn the sequence is discrete, so the limit
point must lie in ∂CVn. We will argue that l[T0](Λ

+, [T ]) = l[T0](Λ
−, [T ]) = 0 and

get a contradiction to Proposition 4.3.

Let L = lT0
(Λ+, X̃0) then lT0

(Λ+, X̃i) < L, and together with d(X̃i) ≥ 1 we

get l[T0](Λ
+, [X̃i]) < L. Therefore, l[T0](Λ

+, [T ]) < L. Now assume by way of

contradiction that l[T0](Λ
+, [T ]) = L′ > 0. There exists some conjugacy class [w]

such that tr(w, T ) < L′

2nL (if T is simplicial then there is a conjugacy class [w] which
is elliptic and if T is not simplicial, it has a quotient tree with dense orbits. In either
case we can find conjugacy classes with arbitrarily small translation length). Since

X̃k converges projectively to [T ],

tr(w, X̃k)

d(X̃k)
→

tr(w, T )

d(T )
<

1

d(T )

L′

2nL
<

L′

2nL

Thus, for a large enough k, tr(w,fXk)

d( fXk)
< 1

nL which implies tr(w,fXk)

lT0
(Λ+,fXk)

< 1
nL . But

this is impossible because lT0
(Λ+, X̃k) < L, and tr(w, X̃k) > 1

n . So we get a
contradiction to l[T0](Λ

+, [T ]) 6= 0. A similar argument shows l[T0](Λ
−, [T ]) = 0

and we get a contradiction. Therefore, the process must end in a finite number of
steps with a graph F such that WhF (λ, ν) is connected without a cut vertex. ˜

Remark 4.5. Experimental evidence suggests that one can actually choose F to
lie on an axis of φ, but we weren’t able to show that.

Proof of Observation 4.4. We must estimate lim
k→∞

ak where ak =
Pm

i=1
rili(T )P

m
i=1

rili(T0) for

T = X̃i and T = X̃i+1. We’ll show that lengths of images of tiles in ]Xi+1 are shorter

than in X̃i. Let h : G0 → Xi be a Lipschitz map homotopic to the difference in
marking. Let τ be a tile of λX ∈ Λ+

φ (X). The idea is that [h(τ)] contains a long

subsegment of λXi
= [h(λX)] sandwiched between short segments which don’t lie on
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the leaf since they cancel when we tighten h(λX). The whitehead move we preform
will definitely make [h(τ)] ∩ λXi

shorter, but might possibly make the segments in
the beginning and end of [h(τ)] longer. The following shows that if we take τ to
be long enough then the part that gets shorter dominates and the whole tile gets
shorter after preforming the Whitehead move.

Let h : G0 → Xi be a Lipschitz map homotopic to the difference in marking,
C = BCC(h) and M = max{nC, 1}. Let e be the oriented edge which represents
the cut vertex in WhXi

(λ, ν). Let X0
i , X

1
i be the subgraphs that e cuts off, where

ē ∈ X0
i . Let γ ⊆ λXi

∈ Λ+(Xi) be long enough to contain at least 5M sequences of
the type ēx and x̄e with x ∈ X1

i . Let τj be tiles inG0 long enough so that [h(τj)] ⊇ γ
for all j. We must estimate the difference between l([h(τj)], Xi) and l([h(τj)], Xi+1).
[h(τj)] = σ1σ2σ3 where σ2 ⊆ λXi

and l(σ1, Xi), l(σ3, Xi) < C (since the part that
isn’t in λXi

is contained in a backtracking segment). Notice that σ2 only becomes
shorter in Xi+1 but σ1, σ3 might become longer. We estimate the growth of σ1, σ3.
Each of them contains at most nC edges because edge lengths are 1

n . Each edge

might grow by at most 2
n (from 1

n to 3
n ) so σ1 contributes at most nC · 2

n = 2C
additional length. The same is true for σ3. On the other hand, σ2 ⊇ γ and therefore
at least 5M sequences of the form ēx, x̄e get substituted by x, x̄. Thus the length of
σ2 gets smaller by at least 5M · 1

n ≥ 5C . Thus l(τj , Xi+1)−l(τj , Xi) ≤ 2·2C−5C <

−C. ak gets strictly smaller by a definite amount so lT0
(Λ+, X̃i) > lT0

(Λ+,]Xi+1).

By the same argument lT0
(Λ−, X̃i) > lT0

(Λ−,]Xi+1). ˜

Remark 4.6. If WhF (λ, ν) is connected and does not contain a cut vertex, then
WhF ·φ(λ, ν) and WhF ·φ−1(λ, ν) satisfy the same property. In fact WhF (λ, ν) =
WhF ·φ(λ, ν) = WhF ·φ−1(λ, ν). Indeed let k : F → F and k′ : F → F be topological
representatives of φ, φ−1 i.e. for each edge they restrict to an immersion or collapse
it to a point. Then WhF (λ) = WhF ·φ(k#(λ)) this is because λ ∈ Λ+(F ) implies
k#(λ) ∈ Λ+(F · φ). WhF ·φ(k#(λ)) = WhF ·φ(λ) because Λ+(F · φ) is φ, φ−1-
invariant . Thus WhF (λ) = WhFφ(λ). Similarly, WhF (ν) = WhF ·φ(k#(ν)) =
WhF ·φ(ν). Thus, WhF (λ, ν) = WhF ·φ(λ, ν). The argument for WhFφ−1(λ, ν) is
identical.

5. Axes are strongly contracting

Definition 5.1. Let Υ(X) be a lamination in X ∈ CVn and η a leaf of Υ(X). Let
γ be a tight edge path contained in η. We say that γ is an r-piece of ηX if the
l(γ,X) ≥ r.

The next proposition states that basis elements can’t contain long pieces of both
Λ+ and Λ−.

Proposition 5.2. There exists a constant ℓ > 0 so that for all Gt ∈ Lf :

(1) Let β be a tight loop in Gt representing the conjugacy class [w]. Suppose
there exist leaves λ ∈ Λ+

f (Gt) and ν ∈ Λ−f (Gt) such that β contains an
ℓ-piece of λ and an ℓ-piece of ν. Then w is not a basis element.

(2) Let α, β be tight loops in Gt which represent the conjugacy classes [w1], [w2],
which are compatible with a free decomposition of Fn. If α contains an ℓ-
piece of λ (an ℓ-piece of ν) then β doesn’t contain an ℓ-piece of ν (an ℓ-piece
of λ).
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β1

β2

h0

β

G0
F

Figure 7. A basis element can’t contain long pieces of both laminations

Proof. (1) We first prove this for G0. By lemma 4.2, there is an F ∈ CVn
such that WhF (λ, ν) is connected and contains no cut point. Suppose

d = d(F,G0) and k = exp(d) so for all loops α: l(α,G0)
l(α,F ) ≤ k. Hence l(α, F ) ≥

1
k l(α,G0). Let h0 : G0 → F be an optimal Lipschitz map homotopic to
the difference in marking. Since λF , νF are quasi-periodic there is a length
r such that if γF is an r-piece of λF then γF contains all of the 2-edge
leaf segments in λF hence WhF (λF ) = WhF (γF ). Similarly, if δF is an
r-piece of νF then δF contains all of the 2-edge leaf segments in νF hence
WhF (νF ) = WhF (δF ). Let ℓ = k(r + 2C) then if β ⊇ β1 where β1 is an
ℓ-piece of λ0 ∈ Λ+(G0) then l([h0(β1)], F ) > r+ 2C hence [h0(β)] contains
an r-piece of λF . Similarly, if β ⊇ β2 is an ℓ-piece of ν0 ∈ Λ−(G0) then
l([h0(β2)], F ) > r + 2C thus [h0(β)] contains an r-piece of νF . Therefore,
if β contains such β1, β2 (see figure 7) then WhF ([h(β)]) ⊇WhF (λ, ν) and
it would be connected and would not contain a cut vertex. By whitehead’s
theorem [w] is not a basis element.

We can do the same for all graphs Gt ∈ Lf and ℓ depends on d(F,Gt),
which varies continuously with t. Therefore if we vary t across a fundamen-
tal domain of φ on Lf , there is an upper bound for ℓ (which we still denote
ℓ). Now by remark 4.6 the same is true (with the same ℓ) for any translate
of the fundamental domain (we translate F as well so the distance and the
optimal map remain the same).

(2) The proof of the second claim is similar to 1. With WhF (αF , βF ) replacing
WhF (βF ) in the previous argument.

˜

We now turn to prove some applications:

Lemma 5.3. There is an s > 0 such that: if α, β are conjugacy classes which are
compatible with a free decomposition of Fn then |tα − tβ | < s

Proof. Denote t1 = tα, t2 = tβ . Suppose t2 > t1. Let αt represent α in Gt, and
βt represent β in Gt. We claim that there is a t0 such that if t < t2 − t0 then βt
contains an ℓ-piece of νG(t), and if t > t1 + t0 then αt contains an ℓ-piece of λG(t).
Thus, if |t2 − t1| > 2t0 let r = t1 + t0 then αr contains an ℓ piece of λG(r) and βr
contains an ℓ piece of νG(r) which contradicts proposition 5.2.

To find t0: by proposition 3.16, there is an s1 = s3.16 such that if t > t1 + s1
then LEGf (αt, G(t)) > ǫ0. Let α′t ⊆ αt be a legal segment of length > Ccrit. There
is an N such that fN(α′t) is longer than ℓ+2BCC(f). Let s2 = s1 +N log(λ) then
at t0 = t1 + s2, α contains an ℓ-piece of λ, contributed by α′t. Similarly for g, the
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result follows from the fact that Lf and Lg are close, and from the fact that tα and
t′α are close (by corollary 3.15). ˜

Corollary 5.4. There exists a constant s > 0 such that if α and β are candidates
in X then |tα − tβ | < s

Proof. If the candidates have distinct images it follows from corollary 2.5 and by
lemma 5.3. If they don’t we can apply the previous argument to each of them and a
third candidate with an image distinct from theirs to see that |tα− tβ| < 2s5.3. ˜

Corollary 5.5. There exists an s > 0 such that if the translation length of α ∈ Fn
in both X and Y is smaller than 1 then |π(X) − π(Y )| < s.

Proof. Let < x1, x2, . . . , xn > be a short basis for π1(X) (all loops are smaller than
1). Since vol(X) = vol(Y ) = 1, α is carried by a free factor: < x1, . . . , xk >. So
|tα− t[xn]| < s5.3. Similarly, for Y ,|tα− t[yn]| < s5.3. So t[xn] and t[yn] are uniformly
close. By corollary 5.4, we have that tX and tY are uniformly close. ˜

Consider a geodesic L in a tree T , and π : T → L is the closest point projection.
The next lemma is motivated by the following observation: If X is a point on L
then d(Y,X) = d(Y, π(Y )) + d(π(Y ), X).

π(Y ) X

Y

L

Figure 8. In a tree, the geodesic from Y to a point on a geodesic
visits π(Y )

Lemma 5.6. There exist constants s, c > 0 such that for any Y , if |t − tY | > s
then d(Y,G(t)) ≥ d(Y, π(Y )) + d(π(Y ), G(t)) − c

Proof. Denote X = G(t). Let us first prove it for t > tY . There is an s1 = s5.4
such that for all candidates α of Y : |tα − tY | < s1. There is an s2 = s3.16
such that if t > tα + s2 then LEGf (αt, G(t)) > ǫ0. Let Z = G(tY + s1 + s2)
then for any candidate β of Y , LEGf (β, Z) > ǫ0. Now suppose βY in Y is the

loop which realizes d(Y, Z), i.e. Stβ(Y, Z) = ed(Y,Z). Then, since β is ǫ0-legal

in Z, l(β,X) ≥ ǫ0e
d(Z,X)l(β, Z). Thus Stβ(Z,X) ≥ ǫ0e

d(X,Z) so Stβ(Y,X) =
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Stβ(Y, Z)Stβ(Z,X) ≥ ǫ0e
d(Y,Z)ed(Z,X) = ǫ0e

d(Y,Z)+d(Z,X). We have St(Y,X) ≥
Stβ(Y,X) ≥ ǫ0e

d(Y,Z)+d(Z,X). Thus d(Y,X) ≥ log(ǫ0) + d(Y, Z) + d(Z,X). Now
recall that Z = G(tY + s1 + s2) so d(π(Y ), Z) = s1 + s2. We have,

d(Y, Z) > d(Y, π(Y ))
d(Z,X) > d(π(Y ), X) − (s1 + s2)

thus d(Y,X) ≥ d(Y, π(Y ))+d(π(Y ), X)− (s1 +s2)+log(ǫ0) let c = s1 +s2− log(ǫ0)
and we get d(Y,X) ≥ d(Y, π(Y )) + d(π(Y ), X) − c.

If t < tY : there is an s′ such that the above holds for g. The claim now follows
form the fact that πf , πg are uniformly close (see lemma 3.15).

˜

Getting back to the tree T , if X,Y are any two points such that π(Y ) 6= π(X)
then the geodesic from Y to X passes through π(X). In particular d(Y,X) >
d(Y, π(X)). In CVn:

Lemma 5.7. There exist constants s, c > 0 such that for X,Y ∈ CVn if |tY −tX | >
s, then d(Y,X) ≥ d(Y, π(X)) − c

X

π(X)

Y

L

Figure 9. In a tree, if X,Y project to different points then the
geodesic between them visits both of the projections.

To prove this we recall from lemma 5.2, that if α and β are loops in G(t) repre-
senting candidates of X then they cannot contain long pieces of both laminations
Λ+,Λ−. We will need a slightly souped up version of this.

Proposition 5.8. Let α1, α2 be loops in G(t) ∈ Lf . Suppose that α1 is tight as a
loop and α2 tight as a path, and denote by [α2] the tight loop freely homotopic to α2.
Further assume that the conjugacy classes represented by α1, α2 can be completed
to a common basis. If α1, [α2] both contain an ℓ-piece of ν ∈ Λ− then α2 does not
contain an ℓ-piece of λ ∈ Λ+.
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Proof. We emphasize that by proposition 5.2, [α2] doesn’t cross an ℓ-piece of λ but
we want it not to contain any such pieces in the part that gets cancelled when we
tighten the loop.
We represent α1 by the edge path x in G(t) and α2 by u = wyw−1. We proceed to
prove this by way of contradiction. If w crosses an ℓ-piece of λ then w * xn.
Let x = x1x2 and w = xnx1w2 where w2 6= ∅, n ≥ 0. There are two cases:

• x2 6= ∅ thus i(x2) 6= i(w2). Consider the path

uxn+1 = xnx1w2yw
−1
2 x−1

1 x−nxn+1 =
xnx1w2yw

−1
2 x−1

1 x = xnx1w2yw
−1
2 x2

This path is tight since i(x2) 6= i(w2). Moreover, it is tight as a loop
because x is.

• x2 = ∅ then w = xnw2 where i(w2) 6= i(x). Again uxn+1 = xnw2yw
−1
2 x is

a tight loop.

uxn+1 a represents α2α
n
1 which is a basis element, and it contains an ℓ-piece of ν

but since it contains w, it also contains an ℓ-piece of λ. This contradicts proposition
5.2. ˜

Proof of Lemma 5.7. We prove the claim for X,Y such that tY < tX , the case
where tY > tX follows by applying the same argument to g. We also make the as-
sumption that X is a bouquet of circles or a graph with two vertices, one separating
edge and all other edges are loops.

αi

π(Y ) π(X)G(r)

β

XY

Figure 10. In G(r), β contains many l1-pieces of λ and αi contain
l1-pieces of ν

The idea is that if tY << tX , then for r in the middle of [tY , tX ], any loop which
is short in Y , would contain many ℓ-pieces of λ in G(r). And any loop which is short
in X would contain many ℓ-pieces of ν in G(r), see figure 10. If a candidate in Y
was short in X , then it would contain pieces of both λ and ν in G(r) contradicting
the fact that it is a basis element. To make the argument precise we need to argue
that for a candidate β in Y , l(β,X) is longer than a definite fraction of l(β, π(X)).
We will show that the number of times βX crosses any edge of X is bounded below
by the number of disjoint ℓ-pieces of λ that appear in βπ(X).
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Let s1 = s5.4 i.e. if t > s1 then for any candidate β in Y , |tY − tβ| < s1. Let s2 =
s3.16 i.e. for any primitive conjugacy class β if t > tβ+s2 then LEGf (β,G(t)) > ǫ0.
Let s3 be such that if t > tβ + s2 + s3 then β crosses an ℓ-piece of λ in G(t)
(contributed by one of the Ccrit long legal segments). Let s4 be such that for any
primitive conjugacy class β if t < tβ − s4 then β contains an ℓ-piece of ν in G(t).
Let s = 2s1 + s2 + s3 + s4 and suppose that tX − tY > s we will show that there
exists a c as in the claim.

Let β be a loop in Y such that d(Y, π(X)) = log(Stβ(Y, π(X))). Then by propo-
sition 5.4 tβ < tY + s1. Let r = tX − s1 − s4 then r > tY + s1 + s2 + s3. Let k(r)
be the number of ℓ-pieces of λ in βr with disjoint interiors, then

k(r) · ℓ > ǫ0l(β,G(r))

If X is a wedge of circles let α1, . . . , αn denote the edges in X , and suppose α1

is the longest edge so that l(α1, X) > 1
n . If X is a graph of the other type let α1

be the longest one-edge-loop, let p be the initial (and terminal) vertex of α1, and
let α2, . . . , αn be immersed paths based at p so that the αis generate π1(X, p).
Choose a map h : X → G(r), homotopic to the difference in marking, so that h(α1)
is a tight loop and h#(αi) are tight as paths. Here, h#(αi) is the immersed path
homotopic to h(αi) relative to h(p). Each h#(αi) in G(r) contains an ℓ-piece of ν.
By proposition 5.8 for 1 ≤ i ≤ n, h#(αi) doesn’t contain any ℓ-pieces of λ.

Claim. Let γ be a conjugacy class in Fn and write it as a cyclically reduced word
in α1, . . . , αn the basis of π1(X, p). If γG(r) contains k occurrences of ℓ-pieces of

Λ+ in G(r) (with disjoint interiors) then γ traverses each αq at least k times.

Proof of Claim. First note that if γX is a loop which doesn’t traverse αq at all then
it is carried by the free factor < α1, . . . , α̂q, . . . , αn >. Using proposition 5.2 applied
to [h(αq)], [h(γ)] in G(r), we get that [h(γ)] = γG(r) does not contain any l-pieces

of Λ+ in G(r).
Now suppose that γX = αi1 . . . αiN so that αij = αq for at most m choices of js.
γG(r) is the result of reducing h#(αi1) · h#(αi2) · · ·h#(αiN ) to get σi1σi2 · · ·σiN
where σij are paths in G(r) which are what’s left from h#(αij ) after the reduction
(some of which might be trivial).
ℓ-pieces of λ can appear only if they are split between different σis. If there were
m + 1 disjoint ℓ-pieces of λ in γG(r) then there is an ℓ-piece of λ appearing in
σik · · ·σil = [h#(αik) . . . h#(αil)] where none of the αij are equal to αq. This is a
contradiction. ˜

By the claim above βX in X must traverse α1 at least k = k(r) times. If
l(α1, X) > 1

n+1 then l(β,X) > k
n+1 . Otherwise, X has a separating edge e and

l(e,X) > 1
n+1 . Let δ be a one-edge-loop so that α1 and δ are loops on oppo-

site sides of e. By the claim above βX traverses α1 and δ alternately at least k
times therefore it must cross e at least k times. Again we get l(β,X) > k

n+1 .

Therefore, l(β,X) > ǫ0
(n+1)ℓ l(β,G(r)). Since the distance is almost symmetric,

there is a µ = exp
(
s1+s4
c2.10(θ)

)
such that l(β,G(r)) > µl(β, π(X)) therefore l(β,X) >

ǫ0µ
(n+1)ℓ l(β, π(X)). Thus, we get l(β,X)

l(β,Y ) >
ǫ0µ

(n+1)ℓ
l(β,π(X))
l(β,Y ) i.e.

d(Y,X) > d(Y, π(X)) − log

(
(n+ 1)ℓ

ǫ0µ

)
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Then c in the statement is the constant log
(

(n+1)ℓ
ǫ0µ

)
.

Now we deal with the case that X is not a graph of the types described above.
We claim that there is a constant b such that any X ∈ CVn is at most a distance
b away from a point K whose graph is either a bouquet of circles or K has two
vertices connected by a separating edge and all other edges are loops. Moreover,
there exists a short loop in X which is still short in K. Therefore, by corollary 5.5
|π(X)−π(K)| < s5.5 so d(Y,X) > d(Y,K)−d(X,K) ≥ d(Y,K)−b > d(Y, π(K))−
c− b > d(Y, π(X)) − c− b− s5.5.
To prove that each point in CVn lies a uniform distance away from a graph K: Let
e be the longest edge in X . If e is non-separating let J be a maximal tree in X
which doesn’t contain e, otherwise let J be the forest obtained from this maximal
tree by deleting e. Note that l(e,X) ≥ 1

3n−3 . Collapse J to get a new unnormalized

graph X ′ with volume > 1
3n−3 . Notice that X ′ is a rose if J was a tree otherwise X ′

is of the second type. Normalize X ′ to get K. Then d(X,K) ≤ log
(

1
1/(3n−3)

)
=

log(3n− 3). The short basis in X is also short in K. ˜

Corollary 5.9. There are constants s, c > 0 such that:
If d(π(Y ), π(X)) > s then d(Y,X) > d(Y, π(Y )) + d(π(Y ), π(X)) − c

Proof. By proposition 5.6 if d(π(Y ), π(X)) > s5.6 then

d(Y, π(X)) > d(Y, π(Y )) + d(π(Y ), π(X)) − c5.6

By proposition 5.7 if d(π(Y ), π(X)) > s5.7 then

d(Y,X) > d(Y, π(X)) − c5.7

So let s = max{s5.6, s5.7} and c = c5.6 + c5.7 then d(Y,X) > s implies

d(Y,X) > d(Y, π(X)) − c5.7 > d(Y, π(Y )) + d(π(Y ), π(X)) − c5.6 − c5.7 =
d(Y, π(Y )) + d(π(Y ), π(X)) − c

˜

As a corollary we get that the projection is coarsely Lipschitz.

Corollary 5.10. There is a constant c such that for all X,Y ∈ CVn: d(X,Y ) ≥
d(π(X), π(Y )) + c

Let r > 0. The ball of outward radius r centered at Y is Br(Y→) = {X ∈ CVn |
d(Y,X) < r}.

Definition 5.11. Let L be a directed geodesic in CVn, and πL : CVn → L is the
closest point projection. L is strongly contracting if there is a constant D > 0 such
that for any ball B ⊆ CVn disjoint from L: diam(π(B)) < D.

Strongly contracting geodesics are a feature of negative curvature. If W is Gro-
mov hyperbolic metric space then all geodesics in W are uniformly strongly con-
tracting. Moreover, a kind of converse holds as well: if L is a D-strongly contracting
geodesic in a metric space W (not necessarily Gromov hyperbolic), then for any
triangle A,B,C with [B,C] contained in L, there are points on [A,B] and [B,C]
which are at most a distance 3D from π(A). If W also satisfies the fellow traveller
property then triangles with one side on L are uniformly slim (in the sense of Gro-
mov). This provides justification for the somewhat informal assertion that W is
negatively curved in the direction of L.
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Theorem 5.12. If f : G → G is a train-track representative of a fully irreducible
outer automorphism φ, then Lf is D-strongly contracting.

Proof. It is enough to show that there exists aD > 0 such that diam{π(Br(Y→))} <
D for r = d(Y, π(Y )). We’ll show that if X ∈ Br(Y→) then d(π(Y ), π(X)) < D
where D = max{s5.9, c5.9}. By proposition 5.9 either d(π(Y ), π(X)) < s5.9 or
d(Y,X) < d(Y, π(Y )) + d(π(Y ), π(X)) − c5.9. If the latter occurs then

r + d(π(Y ), π(X)) − c5.9 =
d(Y, π(Y )) + d(π(Y ), π(X)) − c5.9 <
d(Y,X) < r

Thus d(π(Y ), π(X)) < c5.9. ˜

A well known consequence is:

Lemma 5.13 (The Morse Lemma). If L is a D-contracting geodesic and Q is an
(a, b) quasi-geodesic with endpoints on L then there exists a constant d depending
only on D, a, b such that dHaus(ImQ,L) < d.

Remark 5.14. In fact, we only need Q to satisfy len(Q|[t1,t2]) < a[d(Q(t),Q(t′))]+
b for the corollary above to hold true. Note that in general, not all quasi-geodesics
satisfy this property. However, any quasi-geodesic Q lies in a bounded Hausdorff
neighborhood of a tame quasi-geodesic Q′ therefore we may as well assume Q
satisfies this inequality.

Proof of the Morse Lemma. We fix the following notation. Let c = max{a, b, 1},
R = max{d(Q(t),L)|t ∈ R} and suppose R > cD. Let [s1, s2] be a maximum
subinterval such that for every s ∈ [s1, s2]: d(Q(s),L) ≥ cD. Subdivide [s1, s2]
into: s1 = r1, . . . , rm, rm+1 = s2 where d(Q(ri),Q(ri+1)) = 2cD for i ≤ m and
d(Q(rm),Q(rm+1)) ≤ 2cD. Thus:

(9) len(Q|[s1,s2]) ≥
m+1∑

i=1

d(Q(ri),Q(ri+1)) ≥ 2cDm

On the other hand, let Pi = π(Q(ri)). Since d(Q(ri), Pi) ≥ cD we get d(Pi, Pi+1) <
D therefore d(P1, Pm+1) ≤ D(m+1). So d(Q(r1),Q(rm+1)) ≤ cD+(m+1)D+c1cD
where c1 = c2.10(θ) and θ is small enough so that NcD(L) ⊆ CVn(θ). Therefore,

(10) len(Q|[s1,s2]) ≤ cd(Q(s1),Q(s2)) + c ≤ c
(
cD + (m+ 1)D + c1cD

)
+ c

Combining the inequalities 9 and 10 we get:

2mcD ≤ c2D + (m+ 1)cD + c1c
2D

After some manipulation we get: m ≤ cD(c+c1)+c
cD < 2c+ c1. Hence len(Q|[s1,s2]) ≤

m2cD < 2(c1 + 2c)cD. Thus for each s ∈ [s1, s2]:

d(Q(s),L) < d(Q(s),Q(s2)) + d(Q(s2),L) ≤ len(Q|[s1,s2]) + cD <

2(c1 + 2c)cD + cD

˜
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6. Axes of fully irreducible elements in the Cayley graph of Out(Fn)

Let C be the Cayley graph of Out(Fn), with the Whitehead generators {φi}
N
i=1.

Let φ be a fully irreducible outer automorphism. Let f : G → G be a train-track
map for φ. Choose an embedding ι : C →֒ CVn as follows. Let L be the axis for φ
in C . Choose some vertex ψ ∈ L and map ι(ψ) = G. Extend ι to the vertices of C
equivariantly and to the edges of C by mapping them onto some geodesic between
the images of their endpoints. Let M = max{dCVn

(ι(φi), ι(id)) | φi is a generator}
then

dCVn
(ι(ψ1), ι(ψ2)) ≤M · dC (ψ1, ψ2)

However, this is not a quasi-isometric embedding.

Example 6.1. ψ1 = id and ψ2 =

{
x→ x
y → xym

Suppose R is a bouquet of 2 circles

each of length 1
2 with the identity marking. Rψ1 = R, the difference in marking

h : R → Rψ2 is ψ2 . Thus dCVn
(R,Rψ2) = log( (m+1)/2

1/2 ) = log(m + 1), while

dC (ψ1, ψ2) = m.

However, for points on L (the axis for φ) distances in CVn coarsely correspond to
distances in C . Indeed if α is a legal loop in G then l(fm(α), G) = λml(α,G). More-
over, α in G and fm(α) in G ·φm represent the same conjugacy class, which realizes
the maximal stretch. Thus dCVn

(G,Gφm) = m log(λ). Let |φ|C be the transla-

tion length of φ, and ψ ∈ L then dC (ψ, φmψ) = m · |φ|C =
dCVn (G,G·φm)

log(λ) |φ|C =
|φ|

log(λ)dCVn
(G,Gφm) = |φ|

log(λ)dCVn
(ι(ψ), ι(φmψ)).

Even though distances in C are larger (modulo a multiplicative scalar) then their
images in CVn they cannot be arbitrarily larger, as the next lemma shows.

Lemma 6.2. For every a > 0 there is a b > 0 such that: If dCVn
(ι(ψ), ι(χ)) < a

then dC (ψ, χ) < b for all ψ, χ ∈ OutFn.

Proof. Since the image of ι is discrete, the set {ψ | dCVn
(ι(id), ι(ψ)) < a} is finite.

Let b = max{dC (id, ψ) | d(ι(id), ι(ψ)) < a}. Suppose dCVn
(ι(ψ), ι(χ)) < a then

dCVn
(ι(id), ι(χψ−1)) < a, so dC (id, χψ−1) < b and dC (ψ, χ) < b ˜

Theorem 6.3. L is a stable geodesic in C .

Proof. Since dCVn
(ι(Q(t)), ι(Q(t′))) < MdC (Q(t),Q(t′)) then the length of ι ◦

Q|[t,t′] in CVn is smaller or equal to M lenC (Q|[t,t′]). We can assume Q is a
tame quasi-geodesic i.e. lenCQ|[t,t′] ≤ a′|t − t′| + b′ where a′, b′ depend only on
a, b (see [9] page 403). Thus len(ι ◦ Q|[t,t′]) ≤ M(a′|t − t′| + b). By remark 5.14,
Im(ι◦Q) ⊆ Nd(Lf ). By lemma 6.2 we have Im(Q) ⊆ ND(L) for some D depending
only on d. ˜

7. Applications

Remark 7.1. In this section we change the notation by denoting points in CVn
by lower case letters x, y etc.
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7.1. The asymptotic cone of Outer Space.

Definition 7.2. A non-principal maximal ultrafilter ω on the integers is a non-
empty collection of subsets of Z which is closed under inclusion, and finite inter-
section, does not contain any finite sets and if it doesn’t contain A ⊂ Z then it
contains Z rA.
Let ω be a non-principle maximal ultrafilter on the integers. Let (Xi, xi, di) be a
sequence of based metric spaces. Define the following pseudo-distance on

∏
i∈N

Xi:

dω({ai}, {bi}) = lim
ω
dXi

(ai, bi)

The ultralimit of (Xi, xi) is then

lim
ω

(Xi, xi, di) = {y ∈
∏

i∈N

Xi | dω(y, {xi}) <∞}/ ∼

Where y ∼ y′ if dω(y, y′) = 0.
Consider a space X , a point x ∈ X and a sequence of integers ki such that
limi→∞ ki = ∞. The asymptotic cone of (X,x, {ki}) relative to the ultrafilter
ω is:

Coneω(X,x, ki) = lim
ω

(
X,x,

1

ki
dX(·, ·)

)

The asymptotic cone of a geodesic metric space is a geodesic metric space. Let
p ∈ CVn be some basepoint, ω a non-principle ultra-filter, and {ki} a sequence of
integers with limi→∞ ki = ∞, denote CVn = Coneω(CVn, p, {ki}).

Theorem 7.3. If x ∈ CVn lies on a geodesic L ⊆ CVn which is the asymptotic
cone of an axis Lf in CVn of a fully irreducible outer automorphism φ, then x is a
global cut point of CVn.

Proof. We follow the outline of the proof [2] of the analogous fact for MCG(S). We
show that there exists a contraction pL : CVn → L with the following properties:

(1) pL restricted to L is the identity.
(2) pL is locally constant on CVn r L

We now show how this implies that x is a cut point. Pick a representative {xi} ∈∏
i∈N

CVn of x, we can choose the xi so they lie on Lf . Let yi, zi ∈ Lf be points
so that xi is the midpoint of the subsegment of Lf whose endpoints are yi, zi and
d(yi, xi) = d(xi, zi) = ki. Let y = {yi}, z = {zi} then in CVn: d(y, x) = 1 = d(x, z)
and y, z lie on L with x in between them. Let H : [0, 1] → CVn be a continuous
path from y to z, we claim that it’s image must contain the point x. First by
connectivity, there is a t such that p ◦ H(t) = x. Let A = (p ◦H)−1(x), t′ = maxA
and since A is closed t′ ∈ A. If H(t′) /∈ L then p is locally constant on H(t′) hence
t′ has a neighborhood contained in A′ which is a contradiction. Thus H(t′) ∈ L so
H(t′) = p ◦ H(t′) = x. This proves that x is a cut point in CVn.

To finish the proof we show the existence of the map pL. Let {wi} ∈
∏
i∈N

CVn
represent a point w ∈ CVn. Let qi ∈ πL(wi). Define pL(w) = limω qi. If q′i ∈ πL(wi)
are possibly different points, we know that d(qi, q

′
i) < s3.17 so the ultralimits agree.

If {w′i} ∈
∏
i∈N

CVn is a different sequence representing w then limω
1
ki
d(wi, w

′
i) =

0, but by corollary 5.10 we have d(π(wi), π(w′i)) < d(wi, w
′
i)+c5.10 so the ultralimits

of the projections agree. Therefore pL is well defined. The fact that pL restricts
to the identity on L is now obvious. If z ∈ CVn r L then let y ∈ CVn be such
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that d(z, y) < d(z, p(z)). Let {zi}, {yi} ∈
∏
i∈N

CVn represent z, y ∈ CVn then for

almost every i we have 1
ki

(d(xi, qi) − d(xi, yi)) > 0 hence d(xi, yi) < d(xi, qi). By

theorem 5.12: d(π(xi), π(yi)) < D5.12 for almost every i thus p(x) = p(y). ˜

Behrstock [2] used the hyperbolicity of the curve complex of a surface S of
negative Euler characteristic, to show that every point in the asymptotic cone of
MCG(S) is a global cut point. One might hope to use the strongly contracting
geodesics in CVn to prove that the asymptotic cone of Out(Fn) contains many
cut points. One approach might be to map ConeωOut(Fn) → CVn and post-
compose with pL. We would like to conclude that this map is locally constant
off of Lφ. However, a point in ConeωOut(Fn) r Lφ might land on Lφ in CVn
thus we cannot immediately deduce that the projection is locally constant off of
the geodesic. Nevertheless, we conjecture that these difficulties can be resolved
to show that points on axes of fully irreducible automorphisms are cut points in
ConeωOut(Fn).

We recall the following definition made in [15].

Definition 7.4. Let W be a space with a (possibly non-symmetric) metric and
assume W is complete. Let P be a collection of closed geodesic subsets (called
pieces). The space W is said to be tree-graded with respect to P if the following
properties are satisfied:

(1) The intersection of two pieces is either empty of a single point.
(2) Every simple geodesic triangle in X is contained in one piece.

Theorem 7.5. CVn is tree graded.

Proof. Recall that for each axis Lf of an irreducible outer automorphism, we de-
fined in the proof of theorem 7.3 a contraction pL : CVn → L which was locally
constant off of L and the identity when restricted to L. We redefine pL : CVn → R
to map onto R by parameterizing L. Since the set of outer automorphisms is count-
able, enumerate the axes (one for each fully irreducible outer automorphism) by
L1,L2,L3, . . . . Define a map P : CVn →

∏
i∈N
R by sending x to the sequence

(pLi
(x))∞i=1. We define the pieces to be pre-images of points in

∏
i∈N
R under P .

These are automatically closed and disjoint. We claim that each piece is geodesic.
Let x, y ∈ CVn such that P (x) = P (y). Since CVn is a geodesic space, there is a
geodesic α that connects x to y. We claim that P ◦α(t) = P (x) is constant. If not,
then there is a geodesic Li such that pi ◦α(t) 6= pi ◦α(0). By a similar argument to
the one outlined in the proof of theorem 7.3 α must pass through z the midpoint
on Li between pi(α(0)) and pi(α(t)) (actually it passes through every point on Li
between these two points). But α must pass through z again on it’s way from α(t)
to α(1). Thus α contains a loop and so it cannot be a geodesic. Similarly, any
loop α such that P ◦ α is not constant, must intersect itself and therefore cannot
be simple. ˜

7.2. Divergence in Outer Space.

Definition 7.6. Let γ1, γ2 be two geodesic rays in CVn, with γ1(0) = γ2(0) = x.
The divergence function from γ1 to γ2 is:

div(γ1, γ2, t) = inf

{
length(γ)

∣∣∣∣
γ : [0, 1] → CVn rBr(x←)
γ(0) = γ1(t), γ(1) = γ2(t)

}

If f(t) is a function such that:
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(1) for every γ1, γ2: div(γ1, γ2, t) ≺ f(t) (we use g(t) ≺ f(t) to denote the
relationship f(t) ≤ c · g(t) + c′ for all t)

(2) there exist geodesics γ1, γ2 such that div(γ1, γ2, t) ≍ f(t).

then we say that the divergence function of CVn is on the order of f(t). If only 1
holds we say that f is an upper bound for the divergence of CVn, if only 2 holds
we say that f is a lower bound for the divergence of CVn.

Duchin and Rafi [16] prove that the divergence in Teichmüller space is quadratic.
Behrstock gives an outline of a similar argument [2] for MCG(S). The proof that
the divergence is at least quadratic in the Outer Space setting needs very little
modification, but we include it for the reader’s convenience.

Proposition 7.7. Let γ be a path in CVn, from x to y with d(π(x), π(y)) = 2R. Let
z the point on Lf in the middle of the segment [π(x), π(y)] ⊆ L. Further assume
that the image of γ lies outside the ball BR(z←). If R > 2D5.12 then there is a
constant c such that Len(γ) ≥ cR2 where c only depends on the constants D5.12

and c5.10.

Proof. Subdivide γ into n > 1 subsegments I1, I2, . . . , In, each of which has length
R
2 except for possibly Len(In) ≤

R
2 . Therefore Len(γ) ≥ (n− 1)R2 . Let L0 be the

subsegment of Lf centered at z of length R. Since L is b-contracting for b = D5.12

then L0 is b′-contracting for b′ = b + 4c5.10 + 3 (see Lemma 3.2 in [7]). Each
segment Ij is contained in a ball BR/2(x

′
←) disjoint from L0. Thus the length

of each π(Ij) ≤ b′, since these segments cover L0 we get R ≤ nb′. Therefore

Len(γ) ≥ (n− 1)R2 >
(
R
b′ − 1

)
R
2 = 1

2b′R
2 − 1

2R. ˜

The exact behavior of the divergence function of CVn remains open. Another
interesting question is whether the divergence function in Out(Fn) is quadratic.
Behrstock, Druţu and Mosher [1] prove that Out(Fn) is thick of order at most 1,
thus its divergence is at most quadratic.

7.3. The Behrstock Inequality. In this section let φ, ψ ∈ Out(Fn) be two irre-
ducible outer automorphisms and f, g their respective train-track representatives.
Denote A = Lf , B = Lg and pA = πf and pB = πg. Our first goal is to show
that either A,B are parallel or the diameter of pA(B) is bounded, and we’d like to
understand what the bound depends on. We introduce the following notation for
the next lemma: if x, y ∈ A denote by [x, y]A the subinterval of A whose endpoints
are x and y.

Lemma 7.8. There exist constants c, d such that if x, y ∈ B with d(pA(x), pA(y)) >
c, then

[pA(x), pA(y)]A ⊂ Nd(B)

c, d depend only on the constants s5.7, c5.7 applied to A and B and on c2.10(θ) where
θ is small enough so that A,B ⊆ CVn(θ).

Proof. Let c1 = c2.10(θ) from corollary 2.10, thus for all z, w ∈ CVn(θ): d(z,w)
c1

<

d(w, z) < c1 · d(z, w). Let sA, cA be the constants from lemma 5.7 applied to A,
thus if z, w are points such that d(pA(z), pA(w)) > sA then d(z, w) > d(z, pA(z)) +
d(pA(z), pA(w)) − cA. Let a = 1 + (c1)

2, b = cA(1 + c1) and d = c5.13(a, b) from
Corollary 5.13 applied to B, i.e. for every (a, b)-quasi-geodesic Q with endpoints
on B Nd(B) ⊃ ImQ. We prove that [x, pA(x)] ∪ [pA(x), pA(y)]A ∪ [pA(y), y] is an
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(a, b)-quasi-geodesic.

First note

(11) d(x, y) > d(x, pA(x)) + d(pA(x), pA(y)) − cA

Similarly,
d(y, x) > d(y, pA(y)) + d(pA(y), pA(x)) − cA
d(y, x) > d(y, pA(y)) − cA >

1
c1
d(pA(y), y) − cA

(12) (c1)
2 · d(x, y) > c1d(y, x) > d(pA(y), y) − c1cA

Adding equations 11 and 12 we get

(1 + (c1)
2)d(x, y) >

d(x, pA(x)) + d(pA(x), pA(y)) + d(pA(y), y) − cA(1 + c1)

Therefore [x, pA(x)] ∪ [pA(x), pA(y)]A ∪ [pA(y), y] is a (1 + (c1)
2, cA(1 + c1))-quasi-

geodesic. So it is contained in the d neighborhood of B. Hence [pA(x), pA(y)]A ⊂
Nd(B). ˜

The next Lemma is motivated by the following observation. Let X is a proper
metric space with a properly discontinuous isometric G-action. Let g, h ∈ G be
hyperbolic isometries of X and let Ag, Ah denote their axes. Then for every d there
is a constant k which depends only on d, |g|, |h| such that either Ag, Ah are parallel,
or the length of Ag ∩ Nd(Ah) is shorter than k.
In our case, Outer Space is not proper. The example in figure 2 shows that the
closure of a ball Br(x→) = {y ∈ CVn | d(x, y) < r} need not be compact. However
the closure of the ball Br(x←) = {y ∈ CVn | d(y, x) < r} is always compact. For

each y ∈ Br(x←) and for all conjugacy classes α, l(α, y) ≥ l(α,x)
er . Thus if θ is the

length of the shortest loop in x then l(α, y) ≥ θ
er . So ∂CVn∩Br(x←) = ∅ and since

CVn is compact then the closure of Br(x←) in Outer Space is compact.
Now recall that the Out(Fn) action is properly discontinuous. Thus for every r
there is a number Nr such that Br(x←) contains no more than Nr points of any
orbit.

Definition 7.9. Let A,B be two axes in CVn(θ) and d > 0. Let

AB(d) = {x ∈ A | d(x, pB(x)) ≤ d and d(pB(x), x) ≤ d}

Let convAB(d) be the smallest connected closed set in A containing AB(d). We
claim that for any a ∈ convAB(d): d(a, pB(a)) < r for some r which depends on
d and on the constants from Lemma 5.13. The reason is that if a ∈ [b, c]A for
some b, c ∈ AB then [pB(b), b]B ∪ [b, c]A ∪ [c, pB(c)] is a (1, 2d) quasi-geodesic so
it is contained in the r neighborhood of B. Furthermore, d(pB(a), a) < c1r where
c1 = c2.10(θ).
Let BA = {b | b = pB(x) for x ∈ convAB} then automatically we have d(b, pA(b)) <
c1r therefore d(pA(b), b) < (c1)

2r. If convBA is the smallest closed connected set
containing BA then ∀b ∈ convBA we have d(b, pA(b)) < R for R obtained from
Lemma 5.13 applied to A and (c1)

2r. In conclusion, given d there exists an R
depending only on d, c1 and the constants from Lemma 5.13 such that

∀x ∈ convAB d(x, pB(x)) < R and d(pB(x), x) < R
∀x ∈ convBA d(x, pA(x)) < R and d(pA(x), x) < R
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Lemma 7.10. For every d, there exist constants k,M such that for every f, g such
that A,B ⊆ CVn(θ) and |f |, |g| < M then either f, g have common powers, or the
length of convAB(d) is smaller than k.

Proof. Let k denote the length of convAB(d). Let a be the leftmost point on
convAB(d) assuming that f translates points to the right. Without loss of general-
ity, assume f and g translate points in the same direction. Denote b = pB(a).
For each i ≤ k

|f | there is a unique j such that d(b, pB(af i)g−j) < |g|. Since

d(pB(af i), af i) < R then d(pB(af i)g−j, af ig−j) < R hence d(a, af ig−j) ≤ d(a, b)+
d(b, pB(af i)g−j) + d(pB(af i)g−j, af ig−j) ≤ R + |g| + R = |g| + 2R. Therefore,
d(af ig−j , a) < c1(|g| + 2R) < c1(M + 2R) where c1 = c2.10(θ).
Let r = c1(M +2R) then there are no more than Nr translates of a in Br(a←), but
for each i < k

|f | : d(af
ig−j , a) < r. Therefore, either k < |f |Nr < MNr or there

exists i, j,m, l such that f ig−j = fmg−l hence f, g have common powers. ˜

Corollary 7.11. There exists a constant k, depending only on the constants from
Lemma 7.10 and Lemma 7.8, such that either f, g have common powers or

diam{pA(B)} < k

Proof. Let {xi}, {yi} be sequences on B so that xi converges to one end of B and
yi to the other. If d(pA(xi), pA(yi)) > c7.8 then [pA(xi), pA(yi)] ⊆ Nd(B). Thus
A′ = [pA(xi), pA(yi)]A is contained in AB(c1d). Therefore by Lemma 7.10 (with
c1d replacing d) there is a k7.10 such that either f, g have common powers or the
length of convAB(c1d) and hence the length of A′ is smaller than k7.10. ˜

Let us go back for a moment to the surface case. We denote by M(S) the
marking complex of S. Let Y, Z be subsurfaces of S, denote by C(Z), C(Y ) the
curve complexes of Z, Y . For definitions of the curve complex and the marking
complex consult [2]. Abuse notation to define the projections pY : C(S) → C(Y ),
pY : M(S) → C(Y ) and pZ : C(S) → C(Z), pZ : M(S) → C(Z). In Theorem 4.3 of
[2], Behrstock proved that if Y, Z are overlapping subsurfaces of S, neither of which
is an annulus, then for any marking µ of S:

dC(Y )(pY (∂Z), pY (µ)) > M =⇒ dC(Z)(pZ(∂Y ), pZ(µ)) < M

And the constant M depends only on the topological type of S. In other words,
if one projection is large then the other must be small. We prove an analogous
estimate for our projections.

Suppose f, g, h are train-track maps representing fully irreducible automorphisms
and A,B,C are their axes. Suppose that no two of these automorphisms have com-
mon powers. We define the coarse distance from B to C with respect to A as
dA(B,C) = diam{pA(C) ∪ pA(B)}.

Lemma 7.12. There exists a constant M > 0 depending only on the constants
from Lemma 5.7 and Corollary 7.11 such that at most one of dA(B,C), dB(A,C)
and dC(A,B) is greater than M .

Proof. Let sA, cA, sB, cB, sC , cC be the constants from lemma 5.7 applied to any of
the geodesics A,B,C respectively. Let b ≥ c7.11 the constant from Corollary 7.11
applied to any two of the three geodesics. Let M > max{sA, cA, sB, cB, sC , cC} +
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2b. We claim that if dB(A,C) > M then dC(A,B) < M . Assume by way of
contradiction that both are greater than M . Let y ∈ A and q ∈ B such that
d(y, q) = dHaus(A,B). Let z = pC(y) ∼ pC(A), p = pB(z) ∼ pB(C) and x =
pC(q) ∼ pC(B) (see figure 11 ).

A
y Cz

x

B
pq

Figure 11. If d(p, q) > M then d(x, z) < M .

Because d(pC(y), pC(q)) = d(z, x) > M − 2b > sC :

d(y, q) > d(y, z) + d(z, x) − cC > d(y, z) +M − 2b− cC

Since d(pB(y), pB(z)) = d(q, p) > M − 2b > sB we have

d(y, z) > d(y, q) + d(q, p) − cB > d(y, q) +M − 2b− cB

Therefore

d(y, q) > d(y, z) +M − cC − 2b > d(y, q) + 2M − cC − cB − 4b

which implies 2M < cC + cB + 4b which is a contradiction. ˜

Theorem 7.13 (The Behrstock inequality). Let φ1, . . . , φk be fully irreducible outer
automorphisms and f1, . . . , fk their respective train track representatives with axes
A1, . . . , Ak. Let F be the set of translates of A1, . . . , Ak under the action of Out(Fn).
Then there exists a constant M > 0 such that for any B,C,D ∈ F if no two of the
geodesics are parallel then

dA(B,C) > M =⇒ dB(A,C) < M
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