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Recap: three theorems about subgroups - Ivanov; McCarthy + Bir-
man/McCarthy /Lubotzky

V finite type surface S and subgroup G < MCG(S),

Tits Alternative Either GG contains F, with n > 2, or G contains a finite index
abelian subgroup.

Subgroup trichotomy Either G is finite, or G has a reducing system, or G 3 a
pseudo-Anosov element.

Classification of abelian subgroups G abelian —
3 essential subsurface F' = FyU---UFg C S and ®4,...,Px € Homeo(9) s.t.
P, | S — Fj, =1d, and:
e F, = annulus = &, | F} is a Dehn twist power
e Fj # annulus = &y | F}, is pseudo-Anosov.
e G has a finite index subgroup in (®,) & ... & (Pg) (See figure for example

of where we need to pass to a finite index subgroup).

We are proving all three of these theorems as applications of a single Omnibus
Subgroup Theorem (statement and application a little later; proof next time).
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Figure 1: Suppose G =< ¢,1 >. ¢ has order 2 and 1 is a pseudo-Anosov on the
twice punctured torus. < ¢ > is an index 2 subgoup of G.



Last time:

e Started proof of Tits alternative when G contains a pseudo-Anosov element.

e Source-Sink dynamics: Action of a pseudo-Anosov ¢ € MCG(S) on PMF has
“source—sink” or “north—south” dynamics:

Elé’f; € PMF, such that {; # £ and such that Vn € PMF,

— If n # & then lim, .00 ¢"(1) = &,
— If n# & then lim, 0 ¢7"(n) = 5;

Next: Stabilizers of arational measured foliations
A rational foliation is one that contains closed leaves or a loop of saddle con-

nections or a path of saddle connections between punctures. A foliation that is not
rational is an arational foliation.

V arational F € MF with projective class £ € PMF.
Stab(F) = stabilizer of F under action of MCG(S) on MF

Stab(§) = stabilizer of £ under action of MCG(S) on PMF.
Define the “log stretch” homomorphism

Stab(¢) & R

Y(F) = exp(le) - F
Note that
ker(l¢) = Stab(F)

Theorem (Stretch Theorem). image(/¢) is discrete and ker(Stab(€)) = Stab(F)
1s finite.
— Stab(§) is finite or virtually cyclic.

Proof that image({¢) is discrete:

o le(¥) #0 <= 1 is pseudo-Anosov and § =projective class of F or F; (see
foe example FLP)

= Ay = exp |le(v)| is the stretch factor.



e )\, is the Perron-Frobenius eigenvalue of a non-negative integer matrix of bounded
size.

e The set of such numbers is discrete.
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Proof that Stab(F) is finite: (A piece of Thurston’s original proof of the trichotomy
for elements of MCG(S). Proof shows that Stab(F) is represented by a finite subgroup
of Homeo, (95).)

e Pick an actual measured foliation F' in the class F.

e May assume F' has no saddle connections (collapse them if there are any; this
uses that F' is arational).

e With this assumption, F' is unique up to isotopy (not just up to Whitehead
equivalence).

e Each ¢ € Stab(F) is represented by ¥ € Homeo, (S) such that V(F) = F

(preserving measure!)

— because F' is unique up to isotopy (Notice that if F” has saddle connections
then ¢ (F’) might not be isotopic to F’. See figure for an example).

e The action of ¥ on leaves of F' depends only on .
e Proof (pictures)
— Suppose ¥, ¥’ € Homeo, (S) represent ¢, and W(F) = W/ (F) = F, and L
is a leaf.

— Lift to universal cover S = H2 so that \TJ,\TJ’ have same action on the
boundary.

— — U(9L) = V(L)
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Figure 2: Suppose ¥ acts on F on the left by rotating its separatrices - F' is preserved
under ¥, but the foliation on the right is not preserved by ¢ since it would not preserve
the grouping of the branches.
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Figure 3: \Tf, U’ take L to the same leaf of F since they act on dS in the same way.
They also permute the separatrices and singularities in the same way.

~ = Y(L)=V(L)
- = Y(L)=9'(L)
e Follows that Stab(F) acts on the singularities and the separatrices of F'.

Remains to prove: If U(F') = F and if ¥ preserves the singularities and sepa-
ratrices of F' then W is isotopic to the identity.

e Pick a singularity s, a sector at s, and a positive length transversal « in that
sector. (PICTURE)

e For each r € (0, measure(«)] let «,. be the subsegment of transverse measure r.
e U preserves sectors, so ¥(«) is in the same sector (PICTURE).

e Both a, and ¥(q,) have transverse measure r, both have endpoint s, both are
in the same sector at s.

e There exists r such that a, and ¥(a,) are isotopic along leaves rel s.
e Alter ¥ by this isotopy.
e After this isotopy, ¥ ‘ a, = Id.

e Using «,., decompose S into rectangles (This uses the arationality of F' - every
half leaf is dense).

e U is the identity on each vertical side, preserves each horizontal side, and pre-
serves each rectangle.

e [sotope ¥ to the identity on each horizontal side.
e [sotope ¥ to the identity on each rectangle.

e U is now the identity.



Figure 4: ¥(«) is in the same sector as o but there might be some topology between
a and ¥(«) so choose a subsegment a, where W(a,.) is isotopic to a,. Isotope ¥ to
preserve «,. Use the first return map of «a, to form a rectangle decomposition to
conclude that W is isotopic to the identity.

Corollaries to Stretch Theorem:
Given a pseudo-Anosov ¢ € MCG(S), notation:
§s € PMF is the source.

5; € PMF is the sink.

F, = Fj € MF is (the class of) the stable measured foliation, whose projective class
is &,

f; = Fy € MUF is (the class of) the unstable measured foliation, whose projective

class is £ .

NOTE: the stable and unstable measured foliations are arational, so the Stretch
Theorem applies.

Corollary 1. For any pseudo-Anosov ¢ € MCG(S) with source §; and sink 5(; €
PMF we have:
Stab(£) = Stab(¢))

Step 1: Stab(¢)) is virtually cyclic,
— (¢) < Stab(¢]) has finite index.

Step 2: Giveny € Stab(qu), the mapping class ¥¢1p ! is pseudo-Anosov with source

Y(€,) and sink 5;[
— (1h¢p~") < Stab(¢]) has finite index.

Step 3: The two mapping classes ¢, 1~ 1¢1) € Stab(f;f) have expansion factors > 1
so have positive powers which are equal (since Stab(¢]) is virtually cyclic)

(Yoy™)™ = ¢"



Remark. In particular ¢" and (¢ ~1)™ have the same source.

Step 4: = ¢, 1 '¢1) have the same source (because the source and sink of a
pseudo-Anosov homeomorphism don’t change under positive powers)

(&) =&,

Corollary 2. For any two pseudo-Anosov mapping classes ¢1,pa € MCG(S), the
pairs fj;, fé; are either equal or disjoint.

Proof. Assume they are not disjoint. Replacing ¢; and/or ¢o by its inverse, may
assume

&6 = &
= ¢ € Stab(¢])) = Stab(£},) = Stab(¢;))
= $(&,,) =&,
— 5(;2 = f;l because of source-sink dynamics.
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Proof of Tits Alternative with a pseudo-Anosov element. Suppose the subgroup G <
MCG(S) has a pseudo-Anosov element ¢.

Case 1: G preserves the subset f;t (This is the case where G is virtually cyclic).

The stablizer of this subset contains Stab({’;) with index at most 2, which contains
the infinite cyclic group (¢) with finite index.

Case 2: GG does not preserve the subset 5;'[.

Choose 1 so that w(gj;) + f;t.

By the corollary, w(f(:;) and 55; are disjoint.

Let ¢ = ¢y, so & = (&) and & are disjoint.

Play ping-pong: on a compact space, if two homeomorphisms have source-sink
dynamics with disjoint source-sink pairs, then some powers freely generate an F,
subgroup. %

Recap: statement of Omnibus Subgroup Theorem
Consider ¢ € G.

Cy = canonical reducing system

(#0 <= ¢ is infinite order and reducible).

N, = regular neighborhood of Cy.

Ay, = active subsurface of ¢, defined to be the union of:

e Components of S — Ny on which the first return mapping class is pseudo-Anosov

e Components A of Ny such that the components of S — N on either side of A
have first return mapping class of finite order.



Features of the active subsurface Ay:

e A, is an essential subsurface.

e No annulus component of Ay is isotopic into a distinct component.
e Ay =0 if and only if ¢ has finite order

o A, =S if and only if ¢ is pseudo-Anosov.

Theorem 3 (Omnibus Subgroup Theorem (Handel-M)). Every subgroup contains an
element whose active subsurface is maximal.

More precisely, for every subgroup G < MCG(S) there exists ¢ € G such that for
every ¢ € G, the subsurface Ay is isotopic into the subsurface Ag.

We shall refer to ¢ as a mazimally active element of G.

Last time proved:

Omnibus Subgroup Theorem = Subgroup Trichotomy.

Important lemma in the proof: If ¢ € G is maximally active then (Ay) = A,
for all ¥ € G.

Corollary: If ¢,7 € G are both maximally active then A4, A, are isotopic.

We may therefore define

A = active subsurface of the subgroup G' = Ay for any maximally active ¢ € G.
Ag is well-defined up to isotopy.

Next: Reformulate and (very quickly) prove:

Omnibus Subgroup Theorem == Tits Alternative and Classification of Abelian
Subgroups.

Definition: Given an infinite order, irreducible subgroup G < MCG(S) which
has a pseudo-Anosov element, either:

(G is elementary meaning that G has a virtually cyclic pseudo-Anosov subgroup of
fintie index; or

(G is nonelementary meaning that G has an F; subgroup.

Given G < MCG(S) which is infinite order and reducible. = A¢ is nonempty
and proper.

G acts on the set of components I’ of Az and of S — Ag.

Let Gy = kernel of this action, a finite index subgroup of G that preserves each
F.

Let Gy — MCG(F) be the restriction homomorphism.
Denote its image by Gy } F.

Let G = ﬂker(Go — MCG(F) — Out(H,(F}; Z/3)))



—> (1 = finite index subgroup of G and
Gy } F' is torsion free for each F'

List of special cases for GG} ’ E:

e ['=component of S—As = G, | F is trivial (because it is finite and torsion
free).

e F' = nonannulus component of A — G, ‘ F is irreducible.

— if Gy ’ Fis elementary then it is an infinite cyclic pseudo-Anosov subgroup.

—if Gy ‘ F' is nonelementary then it contains an Fy (by the special case of
the Tits alternative).

e F' = annulus component of Ao — G ‘ F' is an infinite cyclic subgroup
generated by a Dehn twist power.

Theorem 4 (Tits Alt. + Class. of Abel Subgps). Ezactly one of the following is
true:

1. There exists a nonannulus component F' of Ag such that the image of Gi —
MCG(F) is nonelementary.
= G contains an Fy subgroup.

2. For each nonannulus component F of Ag the image of Gi — MCG(F) is
elementary.
= (G is free abelian and satisfies the conclusions of the Classification of Free
Abelian Subgroups.

Proof of (1). The image of the homomorphism G; — MCG(F) contains an Fj.
There is a homomorphic section from this F3; back to Gj. &

Proof of (2). Follows immediately from the list of special cases for Gy } F. &



