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Last time:

Theorem 1 (Conjugacy classification in MCG(T?)). Each conjugacy class of ele-
ments m € MCG(T?) ~ SL(2,Z) falls into ezactly one of the following cases:

Case 1: If |[Tr(m)| < 2 then m has finite order 3, 4, or 6 and:

Case la: If |Tr(m)| = 0 then m is conjugate to exactly one of t = (

0
1
Case 1b: If |Tr(m)| = 1 then m is conjugate to exactly one of r = (,1 ), r2,

rt, orrd

Case 2: If |Tr(m)| = 2 then m is conjugate to exactly one of:i:(}J ’f), n € 7.

Case 3: If |Tr(m)| > 2 then, letting € be the sign of Tr(m), there exists a sequence
of positive integers (p1, pa, - - -, Pak—1,P2k) Where k > 1 such that

e m is conjugate to € times the product of the word

where my = ((H) and mg = (”)

e m is also conjugate to € times the product of any cyclic permutation of this
word,
e m s conjugate to no other positive or negative matri.

The sign € and the sequence (py,pa, ..., Pok—1,P2k), Up to even cyclic permuta-
tion, is a complete conjugacy invariant of m.



Figure 1: The dual tree to the Farey graph. A subdivided edge is a fundumental
domain for the PSL(2,Z) action on the tree.

Proof of conjugacy classification in MCG(T?) Given m € MCG(T?),

e Every nontrivial automorphism of a tree either fixes a vertex or translates along
an invariant axis.

e Action of m on T is trivial if and only if m = +Id.

e Suppose action of m is nontrivial.

Case 1: m fixes a valence 2 or 3 vertex
— but there is only one orbit of valence 2 vertices: the orbit of i. (All
points are specified in the upper half-plane model).
— and there is only one orbit of valence 3 vertices: the orbit of % + ‘/752
— Conjugate m so that it fixes either:
* the vertex i, or

* the vertex % + %gz

Remark. If A is an m-invariant set, then gA is invariant under gmg="*. Sup-

pose m fixes v. Since there are only two orbits of vertices, there’s an element g

such that g(v) =i or g(v) = L + L. So gmg™" fiwes i or 1 + Li.



Figure 2: A horocyclic axis based at oo

— Verify that:

x only matrices that fix i are (_01 (1)) and its powers.

* only matrices that fix % + \/ng are (,01 %) and its powers.

Case 2: m translates along a horocyclic axis

but there is only one orbit of horocyclic axes.

Conjugate so that it translates along the horocyclic axis based at % =
00

Remark. If m’s axis is based at g then g = (2},) will conjugate m to the

desired element.
— Verify matrices that translate along this axis are :l:((l) 711), where

n = (oriented) translation distance

Verification: If m = %Is and then oo will be taken to %. Since we want 00 — 00

then ¢ = 0 and the determinant forces a = d = +1.

Case 3: m translates along a nonhorocyclic axis, whose turn sequence has the

form
Lpl Rp2 . Lp2k—1 RPQk

— But, there is only one orbit of nonhorocyclic axes for each turn se-
quence.



Figure 3: A non-horocyclic axis with turn sequence ... RLRL ...

— Conjugate to preserve axis passing through ¢ from left to right.

Verification: let ¢ be the axis with given turn sequence (starting from a base edge
and walking to the m-image of that base edge). Let {y be the axis whose base
edge passes through i from left to right with the same turn sequence. Choose
my € SL(2,Z) to map the base edge of ¢ to the base edge of by (exists since there
is only one orbit of edges). Since m’ preserves the triangulation, the dual tree,
and the cyclic orientation of edges of the dual tree, it takes € to ly.

— Verify my, = (§1) takes §,9 to §, 1
— Verify mp = (19) takes $,9 to 1,9

— Each time you move forward along another edge of the axis:

x add R or L to the right of the turn sequence,
« multiply mpg or my, (resp.) on the right of the SL(2,Z) word.



Algorithm for conjugacy problem: In PSL(2,7Z)
e PSL(2,Z) =7Z/2+7Z/3 = (t) * (1)

e Every word in ¢, can be cyclically reduced to one of:

Case 1: Empty word
— Case 2a: t

Case 2b: r or 12

— Case 3a: Power of tr or of tr?

Case 3b: Word in tr and tr?, with at least one of each.

e Example:
w = B35t 80 = trirtr?
tr e~ My tr? e~ Mp
w «~ LR?

Constructing an Anosov homeomorphism.

We wish to restate and reprove the Anosov portion of Theorem 1 using a more
topological method using the torus (rather than the combinatorial method using the
tree) that will generalize to all hyperbolic surfaces X, .

The following theorem is useful in many areas of mathematics.

Theorem 2 (Perron-Frobenius Theorem).
For each positive n xn integer matrix M there exists a unique positive unit eigenvector
v, and it has eigenvalue A > 1.

Sketch of the Proof : A positive matrix takes positive vectors to positive vectors,
so {x € R™|x; > 0} is invariant. Consider the simplex S = {z € R"|z; > 0, Xx; = 1}
and the map f : S — S given by applying M and normalizing. By Brower there’s
a fixed point, which gives us a non-negative eigen-vector v. For some j, v; # 0,
but then for each i: A\v; = M; -v > M;; - v; > 0, hence v; > 0 for all 7. Since all
entries are integer A must be greater than 1. Uniquness follows from the fact that f
is contracting. &

Each m € SL(2,Z) with Tr(m) > 2 is conjugate to a positive matrix. (Any
product as in Theorem 1 produces a positive matrix)

By Perron-Frobenius, m has a unit eigenvector v* with eigenvalue A > 1.

Since det(m) = 1, there is also a unit eigenvector v* with eigenvalue A\~1.

Let F* = foliation of R> by lines parallel to v*.



— Fis preserved by the linear action of m on R2.

— Each line of F is metrically stretched by factor .
o Let F* = foliation of R2 by lines parallel to v*,

— Ftis preserved by linear action of m,

— Each line of F is metrically compressed by factor A.
e Action of Z? preserves F b F* and the metrics along their leaves.

e Therefore, action of m on T2 preserves projected foliations F*, F*, stretching
leaves of F* by A, compressing leaves of F* by A.

Remark: This implies that no leaf of the unstable or stable foliations is closed.
Indeed, if some leaf were closed, then it would have to be a simple closed curve (since
it is a leaf of a foliation). But then m(«) would be a simple closed curve which is
a multiple of ! This in turn, implies that the slope of the eigenvectors of m are
wrrational. Since m is an integer matriz \ is irrational as well, for if X were rational
then the linear system of equations whose solution gives the eigenvector would have
rational coefficients and so the slope of the eigenvector would be rational.

e Action of m on T? is said to be Anosov.

e Some additional useful features:

— Each leaf of F*, F* is dense in T7.

— There is a Euclidean metric on T2, affinely equivalent to the given metric,

in which F?, F* intersect at right angles, and locally m looks like (8‘ /\91 )

Anosov conjugacy classification, method 2

o Let ®: 7% — T? be the Anosov homeomorphism representing m € SL(2,Z)
with Tr(m) > 1.

Stable and unstable foliations F*, F*.

Expansion factor A > 1.

For each r > 0 let ¢, denote a F" segment of length r

— choice of ¢, is irrelevant, because the Lie group structure on 72 acts tran-
sitively on such segments, preserving F*°, F*“.

Goals:

— define a rectangle decomposition and a train track, obtained by “slicing
along ¢,”.

— use these to obtain anew the RL loop.



Rectangle decomposition

e There is a unique decomposition of T? into rectangles { R;}, said to be obtained
by “slicing along £,.”, as follows:

— R; is (image of) map I x I — T? which is an embedding on its interior
and on the interior of each side.

Horizontals (I x point) go to segments of F*

Verticals (point x I) go to segments of F*.

— Each horizontal side of R; is in /,

The interior of each rectangle is disjoint from /,.
— R; is maximal with respect to these properties.
e Maximality = each vertical side of R; contains an endpoint of /., coinciding

with either the top endpoint of the side, the bottom endpoint, or some interior
point.



]:u

Figure 4: To construct a rectangle decomposition, start with a point p on ¢, and slide
along the leaf of F* until returning to ¢,. Since leaves are dense, and the foliations
transverse to one another, we must eventually return to /.. Do the same to points in
a small neighborhood of p along /., to obtain an embedded rectangle, whose vertical
lines are leaves of F* and whose horizontal lines are leaves of F*. We can continue
“beefing up” the rectangle, until one of it’s vertices coincides with an endpoint of /,
or one of its vertical edges collides with an endpoint of /,. After doing the same to
all points on ¢, we get a maximal rectangle decoposition of the torus. To check that
this covers the torus, for p € 7?2 which is not on /,, there is a unique leaf of F* which
passes through p. Continuing along it in either direction, until reaching a point ¢ of
¢, (we must stop by the density of the leaves), the points p and ¢ belong to the same
rectangle.

Train track construction

e Collapse each vertical segment of each R;.

e Result: a train track 7., with branches and switches.

— Split open along ¢,
— Generic picture:
* 3 rectangles, 2 vertical segments

* T, has 3 branches and 2 switches
x This is generic in that, if r is perturbed, the picture does not change
up to isotopy of T?.
— Nongeneric picture:
x 2 rectangles, 1 vertical segment
% T, has 2 branches and 1 switch.

x This is nongeneric in that:



Switch

Figure 5: In the non-generic picture, we have one switch corresponding to moving the
pink segment along the foliation. Here all branch segment meet at the same switch.
A turn is legal if there is a leaf of the unstable folitation which makes that turn.

- if r is decreased a little the picture changes: the switch is combed
out.

- if r is increased a little the picture changes to a particular generic
picture, well defined up to isotopy: either a Left split or a Right
split.
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Train track switches
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Figure 6: We get this generic picture from the non-generic case by moving one of the
endpoints of the segment ¢, to increase r. The blue dot marks where the previous
segment ended. In this picture we see 3 rectagles, 3 branches and two switches.

generic picture non—generic picture
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Figure 7: When we have a non-generic rectangle decomposition, and we perturb r,
we get a generic picture. The kind of generic picture we get will determin the RL
sequence of our homomorphism.

Train track expansion of &

bi-infinite sequence of nongeneric points
induced bi-infinite seugence of L’'s and R’s
® acts, stretching ¢, to £),.

Induces loop of L’s and R’s

This is the same loop as obtained using the action on the dual tree of the
modular diagram.

Proof: Left is my, right is mg.



