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Today:

• Foundations of mapping class groups of finite type surfaces:

– Definition of Teichmüller metric

– Definition of pseudo-Anosov homeomorphisms

∗ Both depend on concept of singular xy-structures

– Thurston’s classification of mapping classes

• Beginning of conjugacy classification of pseudo-Anosov mapping classes.

Definition of a finite type surface:

• An oriented surface S homeomorphic to a closed surface minus a finite subset.

• The closed surface is canonically homeomorphic to the end compactification of
S.

• The missing points, or the corresponding ends of S, are called the punctures of
S.

• Usually excluded are:

– Spheres with ≤ 3 punctures — their mapping class groups are finite.

Mapping class group:

• MCG(S) = Homeo+(S)/ Homeo0(S), where

– Homeo+(S) = group of orientation preserving homeomorphisms of S, with
operation of composition
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– Homeo0(S) = normal subgroup of homeomorphisms isotopic to the iden-
tity.

• For any set on which Homeo+(S) acts
(e.g. simple closed curves; conformal structures):

– the orbits of the action of Homeo0(S) are called isotopy classes.

– action of Homeo+(S) on given set descends to
action of MCG(S) on set of isotopy classes
(e.g. vertices of the curve complex; Teichmüller space)

Singular xy-structures.

• A Euclidean structure µ on a connected oriented surface F is a covering by
charts with values in E2 and with overlap maps in Isom+(E2).

• Associated to a Euclidean structure µ are:

– the holonomy homorphism

hµ : π1(F ) 7→ Isom+(E2)

– the rotational holonomy homomorphism

rµ : π1(F ) 7→ Isom+(E2) → SO(2,R)

• A Euclidean structure µ is an xy-structure if

image(rµ) ⊂ {±Id}

– Can change the atlas, by rotating charts, so that overlap maps take values
in {±Id}.

– Overlap maps preserve the horizontal foliation of E2, and the transverse
measure |dy|, inducing

∗ the horizontal measured foliation Fh
µ on S.

– Also preserve vertical foliation and transverse measure |dx|, inducing

∗ the vertical measured foliation Fv
µ on S.

• Given an open disc D, p ∈ D, a Euclidean structure on D − p has a cone
singularity of angle α > 0 at p if:

– the metric completion at p is defined (i.e. by adding a single point to the
end of D − p corresponding to p)

– the completion obtained by adding p is locally isometric to the completion
of

Ẽ2 − 0/Tα

where Tα acts on Ẽ2 − 0 by “rotation through α”.
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• A singular xy-structure on a finite type surface S consists of:

– a finite set Σ ⊂ S

– an xy-structure on S − Σ

such that

– each end of S − Σ has a cone singularity, whose cone angles necessarily
have the form kπ for integers k ≥ 1

∗ (no further condition on the cone angle at a puncture of S)

– at each s ∈ Σ the cone angle has the form kπ for k ≥ 3.

allowed

not allowed



4

Affine xy-maps. Given

• finite type surface S

• singular xy-structures σ0, σ1

• h ∈ Homeo+(S)

we say that h is an affine xy map from σ0 to σ1 if:

• h(Σ(σ0)) = Σ(σ1)

• there exists a number λ = λ(h) > 0, called the stretch factor of h, such that in
xy coordinate charts away from singularities, h looks locally like(

x
y

)
7→

(
λ 0
0 λ−1

)(
x
y

)
+ (translation)

Teichmüller space

• A conformal structure on a finite type surface is of finite type if the singularities
at the punctures are removable.

• Teichmüller space T (S) = set of isotopy classes of finite type conformal struc-
tures on S, with the metric to be defined below.

• Example: given singular xy-structure µ on S with singularity set Σ,

– charts of µ give conformal structure on S − Σ

– Cone singularities are removable (The transition maps near the singular-

ities look like z → z
2
k where k ≥ 3 is the cone angle. The intersection of

a coordinate chart containing the singularity with a cooridinate chart for
some other point in that neighborhood is contained in 2

k
of a circle, so the

transition map is holomorphic there.)

– obtain finite type conformal structure on S

– *wink wink* quadratic differentials . . .

Theorem 1 (Teichmüller’s Theorem). For any two non-isotopic finite type confor-
mal structures σ0, σ1 on S there exist unique singular xy-structures µ0, µ1, homeo-
morphism h ∈ Homeo0(S), and λ = λ(σ0, σ1) > 0 such that

• σi is the induced conformal structure of µi

• h is an affine xy-map from µ0 to µ1 with expansion factor λ.

Moreover,
|log(λ(σ0, σ1))|

is a metric on T (S) called the Teichmüller metric (or maybe 1
2

times this is the
Teichmüller metric?).
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Note key restriction: h is isotopic to the identity.

Corollary 2 (Geodesics in Teichmüller space).
T (S) is a geodesic metric space.
The “Teichmüller geodesic segment” from σ0 to σ1 is the path obtained from µ0, µ1 as
above, altering the singular xy-structure µ0 using the family of matrices

(
` 0
0 `−1

)
for

` ∈ [1, λ] (“affine deformation” path)

Further facts about T (S):

• The Teichmüller geodesic segment between two points is unique.

• Each Teichmüller geodesic segment extends uniquely to a geodesic embedding
R ↪→ T (S) (“affine deformation” lines).

• MCG(S) acts on T (S) by isometries.

• Action of MCG(S) on T (S) is faithful except :

– if S = torus with ≤ 2 punctures or closed surface of genus 2, in which case
kernel ≈ Z/2.

• Mod(S) = image of the action of MCG(S) on T (S). So:

– Mod(S) ≈MCG(S) or MCG(S)/(Z/2)

• Royden’s Theorem: Mod(S) = Isom+(T (S)).

pseudo-Anosov mapping classes. A homeomorphism Φ: S → S is pseudo-
Anosov if there exists a singular xy-structure µ and a number λ = λ(f) > 1 such
that Φ is an xy-affine map from µ to µ with stretch factor λ.

• The unstable foliation of Φ is
Fu = Fh

whose leaves are stretched by factor of λ.

• The stable foliation of Φ is
F s = Fv

whose leaves are compressed by factor of λ.

A mapping class φ ∈ MCG(S) is pseudo-Anosov if it is represented by a pseudo-
Anosov homeomorphism.

Note: By definition (and by Teichmüller’s theorem), a pseudo-Anosov mapping
class has an axis in Teichmüller space, a geodesic along which it translates.

Reducible mapping classes.
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• An essential curve on S is a simple closed curve which does not bound a disc
with ≤ 1 punctures.

• An essential curve system on S is a disjoint union of essential curves.

• MCG(S) acts on the set of isotopy classes of essential curve systems.

• A mapping class φ ∈MCG(S) is reducible if

– φ fixes the isotopy class of some essential curve system

– equivalently, φ is represented by Φ ∈ Homeo+(S) that preserves some
essential curve system.

Theorem 3 (Thurston). For every mapping class Φ ∈MCG(S) one of the following
occurs:

• Φ is of finite order,

• Φ is reducible,

• Φ is pseudo-Anosov

Note: The only overlap of these cases is between finite order and reducible.

Outline of Bers’ Proof: Define the translation number of Φ acting on T (S) as

t(Φ) = inf
σ∈T (S)

d(σ, Φ(σ))

Break into cases, depending on whether the infimum defining t(Φ) is realized as a
minimum.

Case 1: t(Φ) is realized.

Case 1a: t(Φ) > 0. Then Φ is pseudo-Anosov: unravelling the definitions it
follows immediately that Φ is represented by a pseudo-Anosov homeomor-
phism of S.

Case 1b: t(Φ) = 0. Then Φ has a fixed point in T (S), and unravelling the
definitions it follows immediately that there is a representative φ of Φ and
a conformal structure σ such that φ(σ) = σ. But the group of conformal
automorphims of σ is finite.

Case 2: t(Φ) is not realized. Then Bers’ constructs an essential curve system invari-
ant under Φ. (This is the hard work in Bers’ proof).

♦

Remark:
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• Proof shows that every finite order mapping class is represented by a finite order
homeomorphism.

• If t(Φ) > 0 is not realized then Φ has a pseudo-Anosov subsurface.

• If t(Φ) = 0 is not realised the Φ is a composition of a dehn twist about a system
of curves and a finite order symmetry of the surface.

Contrast with Thurston’s proof:

• Construct a compactification T (S) of T (S):

– T (S) ≈ B6g−6+2p

– T (S) is the interior of the ball

– The boundary ∂T (S) is identified with the space of projective measured
foliations (or laminations) PMF (S) = PML(S) (more on this later).

• Given Φ ∈MCG(S), action of Φ has a fixed point in T (S) (Brouwer F.P.T.)

• Break into cases:

– Fixed point in T (S): Φ has finite order

– Fixed point in PMF (S): use it to show that Φ is reducible, pseudo-
Anosov, or finite order.

First step in constructing conjugacy invariants:

Theorem 4 (Uniqueness of pseudo-Anosov homeomorphisms). Each pseudo-Anosov
mapping class on S is represented by a unique pseudo-Anosov homeomorphism up to
topological conjugacy.

More precisely, given two pseudo-Anosov homeomorphisms Φ0, Φ1 ∈ Homeo+(S)
in the same mapping class, there exists Ψ ∈ Homeo0(S) such that

Φ1 = ΨΦ0Ψ
−1

Thus: to classify pseudo-Anosov mapping classes up to conjugacy, it suffices
to classify pseudo-Anosov homeomorphisms up to topological conjugacy. (If two
homeomorphisms represent conjugate mapping classes then there is a homeomorphism
of the surface which conjugates between them, not just up to isotopy).

Note: Theorem says pseudo-Anosov homeomorphisms in the same mapping class
are unique up to “conjugacy by isotopy”.

Proof when S is closed: Define leaf of a singular foliation in a way that allows
it to pass arbitrarily through a singularity.

Step 1: Leaves of F̃ s and of F̃u in S̃ ≈ H2 are uniformly quasigeodesic.
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`

Ψ(`)

Ψ#(`)

• The metric µ on S is locally CAT(0).

• Therefore, the metric µ̃ on S̃ is globally CAT(0).

• Leaves of F̃ s and F̃u are µ local geodesics.

• Therefore, those leaves are globally geodesic.

• µ̃ is K, C quasi-isometric to H2, for some K ≥ 1, C ≥ 0.

• Therefore, leaves are K, C quasigeodesics.

Comment on punctured case: Step 1 is false as stated. But if you first push
leaves of F s and Fu away from the cusps, then it becomes true.

This makes the proof in the punctured case more complicated, but it is basically
the same proof.

Preparation for step 2.
For any quasi-isometry Ψ: H2 → H2

and any geodesic ` ⊂ H2:

• let Ψ#` = the geodesic that fellow travels Ψ(`),

• let Ψ` : ` → Ψ#` be the composition of Ψ
∣∣ ` followed by closest point projection

to `.
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• Let Ψn
` : ` → Ψn

#` denote n iterations of Ψ`, namely,

Ψn
` = ΨΨn−1

# (`) ◦ · · · ◦ΨΨ#(`) ◦Ψ`

• say that Ψ coarsely contracts ` if, under iteration of Ψ`, distance eventually falls
below a uniformly finite threshold. To be precise:
there exists A ≥ 0 such that for all x, y ∈ ` there exists N such that for all
n ≥ N ,

d(Ψn
` (x), Ψn

` (y)) ≤ A

Let

• ∂2π1S = ∂π1S × ∂π1S −∆

• ∂2F̃ s = {(ξ, η) ∈ ∂2π1S
∣∣ ξ, η are the endpoints of some leaf of F̃ s}

• ∂sF̃u ⊂ ∂2π1S is similarly defined.

Recall notation:

• φ is a pseudo-Anosov mapping class,

• Φ is a pseudo-Anosov homeomorphism representing φ

• F s,Fu are the stable and unstable foliations representing φ.

Step 2: Each (ξ, η) ∈ ∂2F̃ s satisfies the following property: given

• any hyperbolic structure on S,

• any Φ′ ∈ Homeo0(S) representing φ,

• any lift Φ̃′ : H2 → H2,

Φ̃′ coarsely contracts the geodesic ξ, η.

Proof of Step 2. Let ` = F̃ s(ξ, η) be the leaf of F̃ s with endpoints ξ, η, which fellow
travels `′ = ξ, η.

Iteration of Φ̃′
`′ on x′ ∈ `′ is tracked up to a uniformly finite distance iteration of

the following process in `:

• apply Φ to a point in the stable leaf ` to get a point in the stable leaf Φ(`), then
perturb a uniformly bounded distance to another point in Φ(`).

The latter process obviously decreases distances until they fall below some uniformly
finite threshold.

♦

TO BE CONTINUED NEXT TIME . . .


