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October 30, 2007

Last time:

Theorem 1 (Uniqueness of pseudo-Anosov homeomorphisms). Each pseudo-Anosov
mapping class on S is represented by pseudo-Anosov homeomorphisms
uniquely up to topological conjugacy.
To be precise: given Φ0, Φ1 ∈ Homeo+(S) pseudo-Anosov homeomorphisms in the
same mapping class, there exists Ψ ∈ Homeo0(S) such that

Φ1 = ΨΦ0Ψ
−1

Note that the uniqueness is up to “conjugacy by isotopy”, meaning that the topo-
logical conjugating map Ψ is isotopic to the identity.

The proof given here is valid only for the case when S is closed. The general case,
when S has punctures, requires dealing with the Nielsen theoretic behavior of cusps.

Step 1: Leaves of F̃ s, F̃u in S̃ ≈ H2 are uniformly quasigeodesic, because they
are geodesic in

E2
s = S̃ with singular Euclidean metric

which is CAT(0) and quasi-isometric to H2.

Notation for Steps 2 and 3 (changed from last time):

• Fix any hyperbolic structure on S,

• Φ = any pseudo-Anosov homeomorphism of S,

• Φ̃ : E2
s → E2

s a lift of Φ

• Ψ = any homeomorphism of S isotopic to Φ,

• Ψ̃ : H2 → H2 the lift of Ψ such that

Φ̃
∣∣ ∂S̃ = Ψ̃

∣∣ ∂S̃
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An argument for the existence of such lifts of Φ and Ψ: Suppose h : I×S → S is an
isotopy from Φ to Ψ. Let p : E2

s → S be the universal covering space for S. By

covering space theory, we can lift Φ ◦ p to Φ̃ : E2
s → E2

s. Moreover, h lifts to a

homotopy h̃ : E2
s → E2

s so that h̃(0, x) = Φ̃(x). This lifted homotopy is bounded,
by the following argument. π1(S) acts by covering transformations cocompactly on
E2

s and a fundamental domain F for the action has diameter ≤ 2Diam(S). For any

g ∈ π1(S), since p ◦ h̃(t, g · x) = h(t, p(x)), there exists a g′ s.t. h̃(t, g · x) = g′ · h̃(t, x).
Now for any x ∈ E2

s find g so that g−1x ∈ F , hence

d(h̃(t, x), h̃(s, x)) = d(h̃(t, gg−1x), h̃(s, gg−1x))

= d(g′h̃(t, g−1x), g′h̃(s, g−1x))

= d(h̃(t, g−1x), h̃(s, g−1x))

≤ 2D

In particular Φ̃ and Ψ̃ induce the same action on the boundary. ♦

This proof shows that not only do Φ̃, Ψ̃ have the same action on the circle at
infinity, but more strongly their values in the finite plane differ by at most a constant;
in what follows we shall denote the bounding constant by C1.

Step 2: Ψ̃ contracts H2 geodesics that have the same endpoints in ∂S̃ as leaves
of F̃ s. To be precise:

There exists A ≥ 0 such that if

• `e
0 = leaf of F̃ s

• `0 = H2 geodesic with same endpoints as `e
0 in ∂S̃

• `e
i = Φ̃(`e

i−1) (inductive definition)

• `i = straightening of Ψ̃(`i−1) (inductive definition)

= H2 geodesic with same endpoints as `e
i in ∂S̃

then for all x0, y0 ∈ `0, letting

• xi, yi ∈ `i be closest to Ψ̃(xi−1), Ψ̃(yi−1) ∈ Ψ̃(`i−1)
(inductive definition)

it follows that there exists N such that if i ≥ N then

dH2(xi, yi) ≤ A
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Figure 1: The straight (green) lines are geodesics in E2
s the curvy (red) lines are

geodesics in H2. Since these metrics are q.i. to each other, and Φ̃ and Ψ̃ are a
bounded distance apart, `e

i and `i define the same endpoints on the boundary with
respect to either metric.

Some constants for the proof of Step 2

λ = expansion factor for Φ

= bilipschitz constant for Φ̃ : E2
s → E2

s

K, C = quasi-isometry constants for maps

Ψ̃ : H2 → H2 and Id: H2 ↔ E2
s

C1 = closeness constant for straightening

K, C quasigeodesics to geodesics

in H2 and in E2
s

= closeness constant for maps Φ̃, Ψ̃ on E2
s

For example, d(Ψ̃(xi−1), xi) ≤ C1.
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Strategy of the proof of Step 2: Iterate in E2
s

Switching from H2 to E2
s. Letting xe

i = point on `e
i closest to xi in E2

s,

dE2
s
(xi, x

e
i ) ≤ C1

which implies

dH2(xi, x
e
i ) ≤ KC1 + C0

Similarly for ye
i .

Step 2 therefore reduces to proving:

• The sequence xe
i , y

e
i is contracted in E2

s, i.e.

• dE2
s
(xe

i , y
e
i ) eventually falls below some constant.

Iteration in E2
s

d(xe
i , Φ̃(xe

i−1)) ≤ (λ + K + 2)C1 + C0 = C2

map by Φ̃ and make C2 error;
map by Φ̃ and make C2 error;
map by Φ̃ and make C2 error;
...

d(xe
i , y

e
i ) ≤ d(xe

i , Φ̃(xe
i−1))

+ d(Φ̃(xe
i−1), Φ̃(ye

i−1))

+ d(Φ̃(xe
i−1), y

e
i )

≤ 1

λ
d(xe

i−1, y
e
i−1) + 2C2

shrink by λ and make 2C2 error;
shrink by λ and make 2C2 error;
shrink by λ and make 2C2 error;
...

It follows that d(xe
i , y

e
i ) eventually shrinks below

2C2

1− 1
λ

.

Explicitly: After the n-th iteration

d(xe
n, y

e
n) ≤ 1

λn
d(x0, y0) + C2(1 +

1

λ
+

1

λ2
+ · · ·+ 1

λn−1
)

≤ 1 +
2C2

1− 1
λ
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≤ C1

≤ λC1

Ψ̃(xi−1)

Φ̃

≤ C1

Φ̃(xe
i−1)xe

i
`e
i

`e
i−1

xe
i−1

xi−1

`i−1

`i

≤ C1≤ KC1 + C
Φ̃(xi−1)

xi

Figure 2: xe
1 and x1 are C1 close in the Euclidean metric. x1 and Ψ̃(x0) are C1 close in

the hyperbolic metric so KC1 +C close in the Euclidean metric. Φ̃(x0) and Ψ̃(x0) are

C1 close in the hyperbolic metric, so KC1 + C close in the Euclidean metric. Φ̃(x0)

and Φ̃(xe
0) are λC1 close because x0 and xe

0 are C1 close and Φ stretches distances by

at most λ. In conclusion, xe
1 and Φ̃(xe

0) are C2 close.
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What makes this calculation work is that the constant C2 does not depend on the
step i that we’re at.

♦ Step 2

Step 3: Ψ̃ does NOT contract any H2 geodesic that does NOT have the same
endpoints in ∂S̃ as any leaf of F̃ s.

To be precise, given:

• `0 = H2 geodesic

• `e = E2
s geodesic with same endpoints

• `i, `
e
i as before (inductive)

Assume `e is not a leaf of F̃ s.
It follows that `e has a subsegment that is not horizontal, which implies that there

exists ∃i and a segment α ⊂ `e
i which is nearly vertical and very long.

Now iterate the process:

• map by Φ̃ and make bounded error;

• map by Φ̃ and make bounded error;

• map by Φ̃ and make bounded error;

• ...

This process, applied to x, y in opposite components of `e
i − α, does not eventually

contract distance.

Final Step: Proof of uniqueness of pseudo-Anosov homeomorphisms
Let Φi, i = 0, 1, be isotopic pseudo-Anosov homeomorphisms, with stable and

unstable foliations F s
i ,Fu

i .

Choose lifts Φ̃0, Φ̃1 to be equal at ∞.
Steps 2 and 3 together imply that Φ̃0, Φ̃1 contract the exact same set of geodesics,

namely those with endpoints
∂2F̃ s

0 = ∂2F̃ s
1

Also, Φ̃−1
0 , Φ̃−1

1 contract the exact same set of geodesics, namely those with endpoints

∂2F̃u
0 = ∂2F̃u

1

Must construct homeomorphism F : S̃ → S̃ such that

• (π1S-equivariance) F respects orbits of the action of π1S, and so descends to S

• Φ̃0F = F Φ̃1
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For i = 0, 1, each point x ∈ S̃ is named by two subsets of ∂S̃:

• ∂s
i (x) = set of endpoints of leaves of F̃ s

i passing through x (at least 2 points,
possibly more)

• ∂u
i (x) = set of endpoints of leaves of F̃u

i passing through x (at least 2 points,
possibly more)

Lemma (Basis of well-definedness:). The set of ordered pairs of subsets

{(∂s
i (x), ∂u

i (x))
∣∣ x ∈ S̃}

is independent of i = 0, 1.

Proof. The set of subsets
Bs

i = {∂s
i (x)

∣∣ x ∈ S̃}

is independent of i = 0, 1: follows from steps 2 and 3.
Given i = 0, 1, and given a pair of subsets

X ∈ Bs
i , Y ∈ Bu

i

the following are equivalent:

• ∃x ∈ S such that (X, Y ) = (∂s
i (x), ∂u

i (x))

• X, Y link each other in S1
∞.

This is independent of i. ♦

Now define F : S̃ → S̃: for each x ∈ F̃ define the point

x′ = Fx

by the requirements

∂s
1(x

′) = ∂s
0(x)

∂s
1(x

′) = ∂s
0(x)

It is easy to see (or have already checked):

• well-defined bijection

• π1S equivariance

• set theoretic conjugacy

Must also prove:

• continuity
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Figure 3: The endpoints of the solid geodesic are in ∂s
i (x) and the endpoints of the

dashed geodesic are in ∂u
i (x). They are linked.

A few words about continuity

• Topologize finite subsets of ∂S̃ so that A, B are close if they have subsets of
cardinality ≥ 2 that are close in the Hausdorff sense.

• The map
S̃ → finite subsets of ∂S̃ × finite subset of ∂S̃

defined by
x 7→ (∂s

i (x), ∂u
i (x))

is a homemorphism onto its image.

• Although the full space
(
finite subsets of ∂S̃ × finite subset of ∂S̃

)
is not Haus-

dorff, the image of the map is Hausdorff, because for each x, y, the two sets
∂s

i (x), ∂s
i (y) do not link each other, and the two sets ∂u

i (x), ∂u
i (y) do not link

each other.

• The image is independent of i = 0, 1.

Remark 1. This model for pseudo-Anosov homeomorphisms was discovered by Culler-
Shalen-Levitt. Is there a similar model for fully irreducible outer automorphisms
of Fn?
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Topological conjugacy invariants of pseudo-Anosov homeomorphisms

• Folk knowledge: the set of train track maps is a complete topological invariant
(up to combinatorial equivalence of train track maps)

• Proof is almost obvious.

Advantage:

• Easy to say, easy to prove.

Disadvantage:

• Although it is finitistic . . .Usually one describes a train track map by writing
the image of each branch as a sequence of branches.

• Example: consider M ∈ SL(2,Z) given by

M = RLRL2RLR2L . . . RL2RLRLRLR2L︸ ︷︷ ︸
k alternations between R and L

where R or R2 is chosen randomly,
and L or L2 is chosen randomly.

• Fact: the image of each generator of Z2 under this map has length exponential
in k.

• Conclusion: writing out images of branches is vastly more inefficient than

– “RL” notation,

– equivalently, train track splitting information.

Instead we shall use: Train track expansions

Given:

• Pseudo-Anosov homeomorphism Φ ∈ Homeo+(S)

• Stable and unstable foliations F s,Fu

Construct train track approximations of Fu by:

• Choosing an unstable leaf segment (or family thereof)

• Use it (them) to decompose S into su-rectangles

• Use the rectangle decomposition to construct the train track.

Construct splittings (and other relations) between train tracks by:

• perturbing choice of unstable leaf segment (or family thereof)
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Construct train track expansion by:

• Defining a parameter space for choice of unstable leaf segment (or family thereof)

• See how train track varies, as parameter varies

The “train track expansion” (up to appropriate equivalence) is a full conjugacy in-
variant.

Comments about leaf segments

• On torus, xy-isometry group acts transitively

– ∀r > 0 we chose one unstable segment `r.

∗ any two choices of `r are equivalent under an xy-isometry, and lead to
isotopic train tracks

• On S with χ(S) < 0, xy-isometry group is finite on S, only xy-isometry isotopic
to identity is identity.

– Distinct choices of length r unstable segment are inequivalent under x, y-
isometry isotopic to identity.

– Can lead to nonisotopic train tracks

– Need (semi)canonical choices of unstable leaf segments

Separatrices

• An infinite separatrix of a measured foliation is a half-infinite leaf based at a
singularity. (PICTURE)

• There are finitely many singularities, and finitely many infinite separatrices of
any measured foliation on S. Bounds depend only on topology of S.

• Indexed sets of infinite separatrices:

– of Fu, {`i
∣∣ i ∈ I}

– of F s, {wj
∣∣ j ∈ J}

Unstable separatrix systems

• Given i ∈ I and s ≥ 0, let

`i
s = initial length s subsegment of the unstable separatrix `i.

• Parameter space for unstable separatrix systems:

S = [0, +∞)I −O
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Figure 4: For each unstable leaf emanating from the singularity, allocate a subsegment
of length li
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Figure 5: A separatrix system will determine a rectangle decomposition.
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• Notation: we let s = (si)i∈I denote a typical element of S

• Given s ∈ S, the set
`s = ∪i∈I`

i
si

is called a separatrix system of Fu.

Rectangle decompositions

For each s ∈ SΦ, construct a rectangle decomposition Rs:

• The union of the horizontal boundaries of the rectangles in Rs equals

`s = ∪i∈I`
i
si

Let ∂`s be the set of nonsingular endpoints of those `i
si

for which si 6= 0.

• The union of the vertical boundaries of the rectangles in Rs equals

ws =
(⋃

j∈J

wj
s
)
∪

( ⋃
x∈∂`s

wx
s
)

where

– wj
s = longest initial segment of wj with interior disjoint from `s

– wx
s = longest stable leaf segment containing x with interior intersecting `s

solely at x.

• Rs = closures of components of S − (`s ∪ ws)

• Each R ∈ Rs is a rectangle, foliated in the “horizontal” direction by segments
of Fu, and in the “vertical” direction by segments of F s.

• The interior of R is embedded and is disjoint from the boundary of R.

• The boundary of R is immersed but may have some identifications.

• Each “horizontal” component of ∂R maps to `s.

• Each “vertical” component of ∂R maps to ws.

Train tracks

For each s ∈ SΦ, construct a train track τs:

• τs has one main branch bR for each R ∈ Rs, an interior horizontal segment of
R.

• τs has main switches as follows:
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singularity

Figure 6: Train track switches.

– one main switch σj on each wj
s, j ∈ J

– one main switch σx on each wx
s, for x in the boundary of each positive

length `j
s

• τs has one secondary switch and two length zero secondary branches for each
zero length `j

s

Structure of the parameter space SΦ

• For s ∈ SΦ let Cs = {s′ ∈ SΦ

∣∣ τs, τs′ are isotopic}

• Denote Cs = Cτ where τ = τs

• The collection {Cτ} is a decomposition of SΦ, indexed by isotopy classes of
those train tracks of the form τs for some s ∈ SΦ.

Theorem.

1. Each Cτ ⊂ S ⊂ RI is the interior of a compact rectilinear polyhedron in RI .

2. {Cτ} is a CW-decomposition of SΦ, parameterized by isotopy classes invariant
train tracks for positive powers of φ.

3. A cell Cτ is a face of a cell Cτ ′ if and only if there is a smooth forest collapse

τ ′
F−→ τ

where F is a subforest of τ . (PICTURES)

• This map must be homotopic to the identity
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• Smooth arcs must map to smooth arcs (not necessarily by a local injection,
though)

4. The infinite cyclic subgroup 〈φ〉 acts by cellular isomorphisms, with φk(Cτ ) =
Cφk(τ).

The proof of the first item in this theorem requires one to identify, for each cell Cτ ,
a finite set of equations and inequalities that defines the polyhedral structure on Cτ .

The generic case occurs when si > 0 for each i and when each switch of τ has
valence ≤ 3, This case corresponds to a top dimensional cell Cτ defined solely by
inequalities, no equations. As s varies, the horizontal length of a rectangle R ∈ Rs,
which we denote Lh

R, can vary. But if s varies too much, Lh
R can shrink to zero.

Corresponding to R there is an inequality which says Lh
R > 0. In order to show that

this is a linear inequality, one needs an affine expression for Lh
R. This expression

involves only two of the coordinates si, sj, chosen so that the point ∂`i
si

lies on one
vertical boundary of R and the point ∂`j

sj
lies on the other vertical boundary of R.

The expression for Lh
R has one of two forms, depending on the orientations of `i

si
and

`j
sj

relative to R, namely:

Ships travelling in opposite directions Lh
R = si + sj + (constant)

Ships travelling in the same direction Lh
R = si − sj + (constant)

The work involved in proving that Cτ is a rectilinear polyhedron is to show that s ∈ Cτ

if and only if s satisfies the collection of inequalities Lh
R > 0. The “only if” direction is

obvious from the discussion above. The “if” direction requires looking at other affine
inequalities that can arise from coincidences of finite separatrices, coincidences that
are more general versions of the inequalities Lh

R > 0 assocaited to the combinatorics
of Rs itself, and showing that each of these other affine inequalities is implied by the
inequalities Lh

R > 0.

The proof of item 3 in the above theorem can be understood for codimension-1
faces of top dimensional cells by letting a defining inequality Lh

R > 0 degenerate to
an equation Lh

R = 0. This is depicted in the two accompanying figures, in the case of
“ships travelling in opposite directions”.
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Figure 8: The top picture depicts a common face of the two cells depicted on the
bottom. The bottom left cell corresponds to si + sj < A. The bottom right cell
corresponds to si + sj > A. Their common face corresponds to si + sj = A
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Figure 10: In general the codimension of a face of a top dimensional cell equals the
number of main branches (rectangles) whose horizontal lengths degenerate to zero.
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In the above theorem, cells are labelled by isotopy classes of train tracks.
In order to define conjugacy invariants, we must label cells by the combinatorial

type of the train track, not just by its isotopy class.

Combinatorial type of a train track

• Two train tracks τ, τ ′ ⊂ S are combinatorially equivalent if ∃h ∈ Homeo+(S)
such that h(τ) = τ ′.

• Such a map h is called a combinatorial equivalence between τ and τ ′.

• Existence of a combinatorial equivalence is easy to check in terms of gluing
diagrams for τ, τ ′.

• There are only finitely many gluing diagrams, so there are only finitely many
combinatorial equivalence classes.

Remark. An example of combinatorial equivalence. On the genus 2 once
punctured surface, consider the case where there are five 3-pronged singularities and
at the puncture a 1-pronged singularity. Suppose that the only nonzero coordinate
of s is the one si associated to the unstable separatrix `i at the 1-pronged singularity.
Suppose furthermore that we are in the generic case where the stable segment wx

s
passing through x = ∂`i

si
does not contain any singularity. Then the train track τs

has one punctured monogon, and five trigons whose boundaries consist entirely of
secondary branches. There are exactly 105 combinatorial equivalence classes of train
tracks that arise in this manner.

Combinatorial type of a smooth subforest collapse

• Given two smooth subforest collapses

f : τ0
F−→ τ1

f ′ : τ ′0
F ′
−→ τ ′1

• They are combinatorially equivalent if there exist combinatorial equivalences
h0 : τ0 → τ ′0 and h1 : τ1 → τ ′1 such that

h1f is homotopic to f ′h0

• Again, existence of a combinatorial equivalence is easy to check in terms of
gluing diagrams and how the subforests fit into them.

Theorem. Two pseudo-Anosov homeomorphisms
Φ, Φ′ : S → S are topologically conjugate if and only if there exists
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h0
h1

f ′

f

Figure 11: A combinatorial equivalence between two smooth subforest collapses.

• a CW-isomorphism h : SΦ → SΦ′

• a combinatorial equivalence between corresponding pairs of cells, and between
corresponding pairs of face inclusions

such that

Compatibility the cell combinatorial equivalences and the face inclusion combina-
torial equivalences are compatible up to homotopy

Equivariance Everything is equivariant with respect to Φ and Φ′

Remark: The compatibility condition is useful and necessary:

• It is useful in the proof, providing various homeomorphisms needed to “change
the marking” of S in the course of the proof.

• It is necessary in order to “break finite order symmetries” of train tracks.

Proof.

• Given a conjugacy Ψ: S → S such that ΨΦΨ−1 = Φ′, Ψ induces the isomor-
phism h and all of the combinatorial equivalences.

• Conversely, given all of the data as in the theorem, take Ψ to be the mapping
class of the combinatorial equivalence between any pair of cells, use compat-
ibility to prove that Ψ is well-defined, and use equivariance to prove that Ψ
conjugates Φ to Φ′.

♦
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Why is this finististic?

• Because it can be stated in terms of the finite quotient complex SΦ/〈Φ〉, a
“simplex bundle over the circle”. This is analogous to the loop of L’s and R’s.

• Existence of a system of “combinatorial equivalences” between SΦ/〈Φ〉 and
SΦ′/〈Φ′〉 can be checked efficiently and easily by computer.

Why is this reasonable?

• SΦ may seem an intractable object.

• Structure of a “simplex bundle over a line”

• Proper homotopy equivalent to a line

• The quotient complex SΦ/Φ is compact, and is homotopy equivalent to the
circle.

• Given a metric along the edges of the dual 1-complex, define cross sectional
diameter at x ∈ SΦ to be Dx = minimum sum of lengths of dual 1-cells in a
subcomplex K ⊂ SΦ such that x ∈ K and K separates the two ends

• Conjecture/expectation/hope: cross sectional diameter of SΦ has an upper
bound which is polynomial in the circumference of SΦ/Φ.

Why is this computable?

• Apply Bestvina-Handel “Train tracks for surface homeomorphisms”. This pro-
vides an invariant train track, if one exists.

• If pseudo-Anosov, an invariant train track does exist

• If there is an invariant train track, there are algorithms to decide if indeed
pseudo-Anosov

• Once having an invariant train track for a pseudo-Anosov, can compute all of
SΦ/〈Φ〉 by applying “splitting relations” among train tracks

• Given invariant train track τ and a splitting sequence

τ = τ0 � τ1 � · · · � τK = φ(τ)

should be able to algorithmically construct SΦ/Φ in time which is polynomial
in K (assuming that the conjecture/expectation/hope is true)


