Homework 3: The disc model

The disc model of the hyperbolic plane consists of the set

$$\mathbb{D} = \{ z \mid |z| < 1 \}$$

And an inner product $(u,v)_z = \frac{4}{(1-|z|^2)^2}(u,v)_{\mathbb{E}}$. In Anderson 120-121 you can find a proof that the resulting path metric $d_{\mathbb{D}}$ is the push-forward of the metric in (U,d_U) under the map $\xi:U\to\mathbb{D},\ \xi(z)=\frac{iz+1}{-z-i}$.

- 1. Show that the Mobius transformations which preserve the unit disc have the form $\frac{\alpha z + \beta}{\beta z + \overline{\alpha}}$ for some $\alpha, \beta \in \mathbb{C}$. This group is denoted $Mob(\mathbb{D})$).
- 2. Prove that elements in $Mob(\mathbb{D})$ are isometries of $(\mathbb{D}, d_{\mathbb{D}})$. Hint: show that $\frac{|f(z)|}{im(f(z))} = \frac{2}{1-|z|^2}$
- 3. Find the hyperbolic length of the following paths:
 - (a) $p(t) = t, p : [0, r] \to \mathbb{D}$.
 - (b) $q(t) = s(\cos t, \sin t), q : [0, 2\pi] \to \mathbb{D}$ for some $s \in [0, 1]$

What is the the length of a hyperbolic circle as a function of its hyperbolic radius?

- 4. What is the sphere of radius 1 about 0? i.e. describe $S(0,1) = \{z | d_{\mathbb{D}}(0,z) = 1\}$. In general, what are hyperbolic circles about points?
- 5. Let Δ be a triangle with angles α, β, γ and whose opposite sides have lengths a, b, c respectively. Prove the following:
 - (a) The hyperbolic law of sines:

$$\frac{\sinh a}{\sin \alpha} = \frac{\sinh b}{\sin \beta} = \frac{\sinh c}{\sin \gamma}$$

(b) The first hyperbolic law of cosines:

$$\cosh(a) = \cosh(b)\cosh(c) - \sinh(c)\sinh(b)\cos(\alpha)$$

(c) The second hyperbolic law of cosines:

$$\cos(\gamma) = -\cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)\cosh(c)$$

Note that the second hyperbolic law of cosines implies that knowing the angles of a triangle determines its side lengths.

(Hint: pages 181-185 in Anderson).

- 6. Given α, β, γ and two triangles Δ, Δ' with interior angles α, β, γ . Show that there is any appropriate isometry taking Δ to Δ' .
- 7. Given a, b, c > 0 show that a hexagon with alternating side lengths a, b, c is unique up to isometry.